Lorraine M. Work
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorraine M. Work.
Nature | 2014
Edward T. Chouchani; Victoria R. Pell; Edoardo Gaude; Dunja Aksentijevic; Stephanie Y. Sundier; Ellen L. Robb; Angela Logan; Sergiy M. Nadtochiy; Emily N. J. Ord; Anthony C. Smith; Filmon Eyassu; Rachel Shirley; Chou-Hui Hu; Anna J Dare; Andrew M. James; Sebastian Rogatti; Richard C. Hartley; Simon Eaton; Ana S.H. Costa; Paul S. Brookes; Sean M. Davidson; Michael R. Duchen; Kourosh Saeb-Parsy; Michael J. Shattock; Alan J. Robinson; Lorraine M. Work; Christian Frezza; Thomas Krieg; Michael P. Murphy
Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.
Cell Metabolism | 2016
Edward T. Chouchani; Victoria R. Pell; Andrew M. James; Lorraine M. Work; Kourosh Saeb-Parsy; Christian Frezza; Thomas Krieg; Michael P. Murphy
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.
Journal of Virology | 2006
Luca Perabo; Daniela Goldnau; Kathryn White; Jan Endell; Jorge Boucas; Sibille Humme; Lorraine M. Work; Hanna Janicki; Michael Hallek; Andrew H. Baker; Hildegard Büning
ABSTRACT Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2s primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Andrew H. Baker; Vincenzo Sica; Lorraine M. Work; Sharon Williams-Ignarro; Filomena de Nigris; Lilach O. Lerman; Amelia Casamassimi; Alessandro Lanza; Concetta Schiano; Monica Rienzo; Louis J. Ignarro; Claudio Napoli
Despite advances in imaging, understanding the underlying pathways, and clinical translation of animal models of disease there remains an urgent need for therapies that reduce brain damage after stroke and promote functional recovery in patients. Blocking oxidant radicals, reducing matrix metalloproteinase-induced neuronal damage, and use of stem cell therapy have been proposed and tested individually in prior studies. Here we provide a comprehensive integrative management approach to reducing damage and promoting recovery by combining biological therapies targeting these areas. In a rat model of transient cerebral ischemia (middle cerebral artery occlusion) gene delivery vectors were used to overexpress tissue inhibitor of matrix metalloproteinase 1 and 2 (TIMP1 and TIMP2) 3 days before ischemia. After occlusion, autologous bone marrow cells alone or in combination with agents to improve NO bioavailability were administered intraarterially. When infarct size, BrdU incorporation, and motor function recovery were determined in the treatment groups the largest beneficial effect was seen in rats receiving the triple combined therapy, surpassing effects of single or double therapies. Our study highlights the utility of combined drug, gene, and cell therapy in the treatment of stroke.
Hypertension | 2012
Monica Flores-Muñoz; Lorraine M. Work; Kirsten Douglas; Laura Denby; Anna F. Dominiczak; Delyth Graham; Stuart A. Nicklin
The renin-angiotensin system regulates cardiovascular physiology via angiotensin II engaging the angiotensin type 1 or type 2 receptors. Classic actions are type 1 receptor mediated, whereas the type 2 receptor may counteract type 1 receptor activity. Angiotensin-converting enzyme 2 metabolizes angiotensin II to angiotensin-(1-7) and angiotensin I to angiotensin-(1-9). Angiotensin-(1-7) antagonizes angiotensin II actions via the receptor Mas. Angiotensin-(1-9) was shown recently to block cardiomyocyte hypertrophy via the angiotensin type 2 receptor. Here, we investigated in vivo effects of angiotensin-(1-9) via the angiotensin type 2 receptor. Angiotensin-(1-9) (100 ng/kg per minute) with or without the angiotensin type 2 receptor antagonist PD123 319 (100 ng/kg per minute) or PD123 319 alone was infused via osmotic minipump for 4 weeks into stroke-prone spontaneously hypertensive rats. We measured blood pressure by radiotelemetry and cardiac structure and function by echocardiography. Angiotensin-(1-9) did not affect blood pressure or left ventricular mass index but reduced cardiac fibrosis by 50% (P<0.01) through modulating collagen I expression, reversed by PD123 319 coinfusion. In addition, angiotensin-(1-9) inhibited fibroblast proliferation in vitro in a PD123 319-sensitive manner. Aortic myography revealed that angiotensin-(1-9) significantly increased contraction to phenylephrine compared with controls after N-nitro-L-arginine methyl ester treatment, an effect abolished by PD123 319 coinfusion (area under the curve: angiotensin-(1-9) N-nitro-L-arginine methyl ester=98.9±11.8%; control+N-nitro-L-arginine methyl ester=74.0±10.4%; P<0.01), suggesting that angiotensin-(1-9) improved basal NO bioavailability in an angiotensin type 2 receptor–sensitive manner. In summary, angiotensin-(1-9) reduced cardiac fibrosis and altered aortic contraction via the angiotensin type 2 receptor supporting a direct role for angiotensin-(1-9) in the renin-angiotensin system.
British Journal of Pharmacology | 2002
Cherry L. Wainwright; Ashley M. Miller; Lorraine M. Work; Piero Del Soldato
The effect of the nitro‐derivative of aspirin, NCX4016, was assessed on ischaemic ventricular arrhythmias and myocardial infarct size in anaesthetized pigs in comparison to native aspirin. Pigs were given aspirin (10 mg kg−1; n=6), low dose NCX4016 (18.4 mg kg−1; n=6) or high dose NCX4016 (60 mg kg−1; n=7) orally for 5 days prior to coronary occlusion and reperfusion. None of the interventions had any effect on baseline haemodynamics prior to coronary occlusion in comparison to control pigs (n=9). Aspirin and high dose NCX4016 both prevented the generation of thromboxane A2 from platelets activated ex vivo with A23187 (30 μM), whereas all three interventions markedly attenuated platelet aggregation in response to collagen in whole blood in comparison to controls. None of the drug interventions had any effect on the incidence of ventricular fibrillation (VF) during myocardial ischaemia (100% in all groups). However, 60 mg kg−1 NCX4016 significantly attenuated the total number of premature ventricular beats (PVBs) (62±16 vs 273±40 in control pigs; P<0.05) during the first 30 min of occlusion. The higher dose of NCX4016 also significantly reduced myocardial infarct size (22.6±3.7% of area at risk vs 53.0±2.8% of area at risk in control pigs; P<0.05). These results suggest that the nitro‐derivative of aspirin, NCX4016, is an effective antiplatelet agent, which unlike aspirin also reduces the extent of myocardial injury following ischaemia and reperfusion.
Antioxidants | 2014
Rachel Shirley; Emily N. J. Ord; Lorraine M. Work
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Experimental Physiology | 2005
Andrew H. Baker; Angelika Kritz; Lorraine M. Work; Stuart A. Nicklin
Clinical gene therapy for cardiovascular disease remains achievable. To date, however, preclinical studies and clinical trials have highlighted shortfalls in viral gene delivery to vascular cells. These include poor efficiency, poor target tissue selectivity, the presence of pre‐existing neutralizing antibodies and immunogenicity generated by the host to vectors such as adenovirus. These important issues require careful consideration when applying viral vectors for gene therapy. Each delivery vector requires precise optimization and tailoring for each disease application since parameters relating to vector : tissue exposure time, route of delivery and target cell type vary considerably. Optimization can be achieved through modification of the structure of the virus capsid proteins and expression cassette to generate vectors that are highly selective and efficient for target cell binding and entry as well as instilling transcriptional control and/or longevity on transgene expression. This ultimately will improve the efficacy and toxicity profiles of gene delivery vectors and has become a very important area in gene therapy. Here, we review recent advances in the targeting of viral gene delivery vectors to the vasculature.
Gene Therapy | 2008
Kathryn White; Hildegard Büning; Angelika Kritz; Hanna Janicki; John H. McVey; Luca Perabo; G Murphy; Margarete Odenthal; Lorraine M. Work; Michael Hallek; Stuart A. Nicklin; Andrew H. Baker
Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.
Gene Therapy | 2004
Lorraine M. Work; N Ritchie; Stuart A. Nicklin; Paul N. Reynolds; Andrew H. Baker
Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a ≈1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced αv integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.