Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorraine P. Turcotte is active.

Publication


Featured researches published by Lorraine P. Turcotte.


The FASEB Journal | 1999

Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss

Jean-Aimé Simoneau; J.H. Veerkamp; Lorraine P. Turcotte; David E. Kelley

A number of biochemical defects have been identified in glucose metabolism within skeletal muscle in obesity, and positive effects of weight loss on insulin resistance are also well established. Less is known about the capacity of skeletal muscle for the metabolism of fatty acids in obesity‐related insulin resistance and of the effects of weight loss, though it is evident that muscle contains increased triglyceride. The current study was therefore undertaken to profile markers of human skeletal muscle for fatty acid metabolism in relation to obesity, in relation to the phenotype of insulin‐resistant glucose metabolism, and to examine the effects of weight loss. Fifty‐five men and women, lean and obese, with normal glucose tolerance underwent percutaneous biopsy of vastus lateralis skeletal muscle for determination of HADH, CPT, heparin‐releasable (Hr) and tissue‐extractable (Ext) LPL, CS, COX, PFK, and GAPDH enzyme activities, and content of cytosolic and plasma membrane FABP. Insulin sensitivity was measured using the euglycemic clamp method. DEXA was used to measure FM and FFM. In skeletal muscle of obese individuals, CPT, CS, and COX activities were lower while, conversely, they had a higher or similar content of FABPC and FABPPM than in lean individuals. Hr and Ext LPL activities were similar in both groups. In multivariate and simple regression analyses, there were significant correlations between insulin resistance and several markers of FA metabolism, notably, CPT and FABPPM. These data suggest that in obesity‐related insulin resistance, the metabolic capacity of skeletal muscle appears to be organized toward fat esterification rather than oxidation and that dietary‐induced weight loss does not correct this disposition.—Simoneau, J.‐A., Veerkamp, J. H., Turcotte, L. P., Kelley, D. E. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 13, 2051–2060 (1999)


American Journal of Physiology-endocrinology and Metabolism | 1998

Palmitate transport and fatty acid transporters in red and white muscles

Arend Bonen; J. J. F. P. Luiken; S. Liu; D. J. Dyck; Bente Kiens; Søren Kristiansen; Lorraine P. Turcotte; G.J. van der Vusse; J.F.C. Glatz

We performed studies 1) to investigate the kinetics of palmitate transport into giant sarcolemmal vesicles, 2) to determine whether the transport capacity is greater in red muscles than in white muscles, and 3) to determine whether putative long-chain fatty acid (LCFA) transporters are more abundant in red than in white muscles. For these studies we used giant sarcolemmal vesicles, which contained cytoplasmic fatty acid binding protein (FABPc), an intravesicular fatty acid sink. Intravesicular FABPcconcentrations were sufficiently high so as not to limit the uptake of palmitate under conditions of maximal palmitate uptake (i.e., 4.5-fold excess in white and 31.3-fold excess in red muscle vesicles). All of the palmitate taken up was recovered as unesterified palmitate. Palmitate uptake was reduced by phloretin (-50%), sulfo- N-succinimidyl oleate (-43%), anti-plasma membrane-bound FABP (FABPpm, -30%), trypsin (-45%), and when incubation temperature was lowered to 0°C (-70%). Palmitate uptake was also reduced by excess oleate (-65%), but not by excess octanoate or by glucose. Kinetic studies showed that maximal transport was 1.8-fold greater in red vesicles than in white vesicles. The Michaelis-Menten constant in both types of vesicles was ∼6 nM. Fatty acid transport protein mRNA and fatty acid translocase (FAT) mRNA were about fivefold greater in red muscles than in white muscles. FAT/CD36 and FABPpm proteins in red vesicles or in homogenates were greater than in white vesicles or homogenates ( P < 0.05). These studies provide the first evidence of a protein-mediated LCFA transport system in skeletal muscle. In this tissue, palmitate transport rates are greater in red than in white muscles because more LCFA transporters are available.We performed studies 1) to investigate the kinetics of palmitate transport into giant sarcolemmal vesicles, 2) to determine whether the transport capacity is greater in red muscles than in white muscles, and 3) to determine whether putative long-chain fatty acid (LCFA) transporters are more abundant in red than in white muscles. For these studies we used giant sarcolemmal vesicles, which contained cytoplasmic fatty acid binding protein (FABPc), an intravesicular fatty acid sink. Intravesicular FABPc concentrations were sufficiently high so as not to limit the uptake of palmitate under conditions of maximal palmitate uptake (i.e., 4.5-fold excess in white and 31.3-fold excess in red muscle vesicles). All of the palmitate taken up was recovered as unesterified palmitate. Palmitate uptake was reduced by phloretin (-50%), sulfo-N-succinimidyl oleate (-43%), anti-plasma membrane-bound FABP (FABPpm, -30%), trypsin (-45%), and when incubation temperature was lowered to 0 degrees C (-70%). Palmitate uptake was also reduced by excess oleate (-65%), but not by excess octanoate or by glucose. Kinetic studies showed that maximal transport was 1.8-fold greater in red vesicles than in white vesicles. The Michaelis-Menten constant in both types of vesicles was approximately 6 nM. Fatty acid transport protein mRNA and fatty acid translocase (FAT) mRNA were about fivefold greater in red muscles than in white muscles. FAT/CD36 and FABPpm proteins in red vesicles or in homogenates were greater than in white vesicles or homogenates (P < 0.05). These studies provide the first evidence of a protein-mediated LCFA transport system in skeletal muscle. In this tissue, palmitate transport rates are greater in red than in white muscles because more LCFA transporters are available.


Physical Therapy | 2008

Skeletal Muscle Insulin Resistance: Roles of Fatty Acid Metabolism and Exercise

Lorraine P. Turcotte; Jonathan S. Fisher

The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.


Journal of Applied Physiology | 2008

Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle

Marcella A. Raney; Lorraine P. Turcotte

Calcium-calmodulin/dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK1/2) have each been implicated in the regulation of substrate metabolism during exercise. The purpose of this study was to determine whether CaMKII is involved in the regulation of FA uptake and oxidation and, if it is involved, whether it does so independently of AMPK and ERK1/2. Rat hindquarters were perfused at rest with (n = 16) or without (n = 10) 3 mM caffeine, or during electrical stimulation (n = 14). For each condition, rats were subdivided and treated with 10 muM of either KN92 or KN93, inactive and active CaMKII inhibitors, respectively. Both caffeine treatment and electrical stimulation significantly increased FA uptake and oxidation. KN93 abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 33%, and abolished both caffeine- and contraction-induced FA oxidation (P < 0.05). Caffeine had no effect on ERK1/2 phosphorylation (P > 0.05) and increased alpha(2)-AMPK activity by 68% (P < 0.05). Electrical stimulation increased ERK1/2 phosphorylation and alpha(2)-AMPK activity by 51% and 3.4-fold, respectively (P < 0.05). KN93 had no effect on caffeine-induced alpha(2)-AMPK activity, ERK1/2 phosphorylation, or contraction-induced ERK1/2 phosphorylation (P > 0.05). Alternatively, it decreased contraction-induced alpha(2)-AMPK activity by 51% (P < 0.05), suggesting that CaMKII lies upstream of AMPK. These results demonstrate that regulation of contraction-induced FA uptake and oxidation occurs in part via Ca(2+)-independent activation of ERK1/2 as well as Ca(2+)-dependent activation of CaMKII and AMPK.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle

Marcia J. Abbott; Arthur M. Edelman; Lorraine P. Turcotte

Multiple signals have been shown to be involved in regulation of fatty acid (FA) and glucose metabolism in contracting skeletal muscle. This study aimed to determine whether a Ca(2+)-stimulated kinase, CaMKK, is involved in regulation of contraction-induced substrate metabolism and whether it does so in an AMP-activated protein kinase (AMPK)-dependent manner. Rat hindlimbs were perfused at rest (n = 16), with 3 mM caffeine (n = 15), with 2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR; n = 16), or during moderate-intensity muscle contraction (MC; n = 14) and with or without 5 microM STO-609, a CaMKK inhibitor. FA uptake and oxidation increased (P < 0.05) 64% and 71% by caffeine, 42% and 93% by AICAR, and 65% and 143% by MC. STO-609 abolished (P < 0.05) caffeine- and MC-induced FA uptake and oxidation but had no effect with AICAR treatment. Glucose uptake increased (P < 0.05) 104% by caffeine, 85% by AICAR, and 130% by MC, and STO-609 prevented the increase in glucose uptake in caffeine and muscle contraction groups. CaMKKbeta activity increased (P < 0.05) 113% by caffeine treatment and 145% by MC but was not affected by AICAR treatment. STO-609 prevented the caffeine- and MC-induced increase in CaMKKbeta activity. Caffeine, AICAR, and MC increased (P < 0.05) AMPKalpha2 activity by 295%, 11-fold, and 7-fold but did not affect AMPKalpha1 activity. STO-609 decreased (P < 0.05) AMPKalpha2 activity induced by caffeine treatment and MC by 60% and 61% but did not affect AICAR-induced activity. Plasma membrane transport protein content of CD36 and glucose transporter 4 (GLUT4) increased (P < 0.05) with caffeine, AICAR, and MC, and STO-609 prevented caffeine- and MC-induced increases in protein content. These results show the importance of Ca(2+)-dependent signaling via CaMKK activation in the regulation of substrate uptake and FA oxidation in contracting rat skeletal muscle and agree with the notion that CaMKK is an upstream kinase of AMPK in the regulation of substrate metabolism in skeletal muscle.


Molecular and Cellular Biochemistry | 1997

FASTING INCREASES PLASMA MEMBRANE FATTY ACID-BINDING PROTEIN (FABPPM) IN RED SKELETAL MUSCLE

Lorraine P. Turcotte; Ashok K. Srivastava; Jean-Louis Chiasson

The present study was designed to investigate the presence of the fatty acid-binding protein (FABPPM) in the plasma membranes of skeletal muscles with different oxidative capacities for free fatty acid (FFA) oxidation during conditions of normal (fed) or increased (fasted) FFA utilization in the rat. Female Sprague-Dawley rats were either fed or fasted for 12, 24, or 48 h and, plasma membranes (PM) fractions from red and white skeletal muscles were isolated. Short-term fasting significantly decreased body weight by 11% and blood glucose concentration by 42% (6.6 ± 0.2-3.8 ± 0.4 mmol/l) and increased plasma FFA concentration by 5-fold (133 ± 14-793 ± 81 µmol/l). Immunoblotting of PM fractions showed that FABPPM protein content was 83 ± 18% higher in red than in white skeletal muscle and correlated with oxidative capacity as measured by succinate dehydrogenase activity (r = 0.78, p < 0.05). Short-term fasting significantly increased FABPPM protein content by 60 ± 8% in red skeletal muscle but no change was measured in white skeletal muscle. These results show that FABPPM protein content in skeletal muscle is related to oxidative potential and can be increased during a physiological condition known to be associated with an increase in FFA utilization, suggesting that cellular expression of FABPPM may play a role in the regulation of FFA metabolism in skeletal muscle. (Mol Cell Biochem 166: 153-158, 1997)


Molecular and Cellular Biochemistry | 2000

Muscle palmitate uptake and binding are saturable and inhibited by antibodies to FABP(PM).

Lorraine P. Turcotte; Jason R. Swenberger; Michelle Z. Tucker; Alice J. Tee; Gary N. Trump; J. J. F. P. Luiken; Arend Bonen

Studies show that uptake of long-chain fatty acids (LCFA) across the plasma membranes (PM) may occur partly via a carrier-mediated process and that the plasma membrane fatty acid-binding protein (FABPPM) may be a component of this system. To test the hypothesis that FABPPM is involved in transsarcolemmal transport of LCFA in muscle, we measured palmitate uptake in giant sarcolemmal vesicles and palmitate binding to PM proteins in rat muscles, (1) in the presence of increasing amounts of unbound palmitate and (2) in the absence or presence of antibody to FABPPM. Both palmitate uptake and binding were found to be saturable functions of the unbound palmitate concentration with calculated Vmax values of 10.5 ± 1.2 pmol/mg protein/15 sec and 45.6 ± 2.9 nmol/mg protein/15 min and Km values of 12.8 ± 3.8 and 18.4 ± 1.8 nmol/L, respectively. The Vmax values for both palmitate uptake and binding were significantly decreased by 75-79% in the presence of a polyclonal antibody to the rat hepatic FABPPM. Antibody inhibition was found to be dose-dependent and specific to LCFA. Glucose uptake was not affected by the presence of the antibody to FABPPM. Palmitate uptake and binding were also inhibited in the presence of trypsin and phloretin. These results support the hypothesis that transsarcolemmal LCFA transport occurs in part by a carrier-mediated process and that FABPPM is a component of this process in muscle.


Diabetes Care | 1992

Metabolic Responses to Exercise: Effects of endurance training and implications for diabetes

Erik A. Richter; Lorraine P. Turcotte; Peter Hespel; Bente Kiens

In this study, some important metabolic responses to exercise will be discussed, and aspects of particular interest for patients with diabetes mellitus will be emphasized. Alterations in the metabolic responses to exercise induced by physical endurance training and consequences of training for metabolism of plasma lipids and lipoproteins will be discussed. Glucoregulation during exercise is not perfect in normal subjects and is less so in patients with diabetes mellitus. For instance, during intense exercise, large increases in the plasma glucose concentration occur and a state of insulin resistance exists for a few hours after intense exercise. Even so, increased sensitivity to insulin is found the day after intense exercise and also shortly after more moderate intensity exercise, both in healthy subjects and in patients with diabetes mellitus. Increased sensitivity to insulin is also found after endurance training, whereas insulin sensitivity is decreased after inactivity. Exercise training increases the ability of muscle to take up and oxidize free fatty acids during exercise and also increases the activity of the enzyme lipoprotein lipase in muscle. The activity of lipoprotein lipase in muscle correlates with muscle insulin sensitivity. This might explain why insulin resistance is often associated with hypercholesterolemia, hypertriglyceridemia, and low high-density lipoprotein cholesterol.


Diabetes | 2011

Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue: Role of Adipocyte Proteins

Asem H. Ali; Christina Koutsari; Manpreet S. Mundi; Mark D. Stegall; Julie K. Heimbach; Sandra J. Taler; Jonas Nygren; Anders Thorell; Lindsey D. Bogachus; Lorraine P. Turcotte; David A. Bernlohr; Michael D. Jensen

OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation.


American Journal of Physiology-cell Physiology | 2010

Genetic downregulation of AMPK-α isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells

Lindsey D. Bogachus; Lorraine P. Turcotte

Metformin is known to improve insulin sensitivity in part via a rise in AMP-activated protein kinase (AMPK) activity and alterations in muscle metabolism. However, a full understanding of how metformin alters AMPK-α(1) vs. AMPK-α(2) activation remains unknown. To study this question, L6 skeletal muscle cells were treated with or without RNAi oligonucleotide sequences to downregulate AMPK-α(1) or AMPK-α(2) protein expression and incubated with or without 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or metformin and/or insulin. In contrast to AICAR, which preferentially activated AMPK-α(2), metformin preferentially activated AMPK-α(1) in a dose- and time-dependent manner. Metformin increased (P < 0.05) glucose uptake and plasma membrane (PM) Glut4 in a dose- and time-dependent manner. Metformin significantly reduced palmitate uptake (P < 0.05) and oxidation (P < 0.05), and this was accompanied by a similar decrease (P < 0.05) in PM CD36 content but with no change in acetyl-CoA carboxylase (ACC) phosphorylation (P > 0.05). AICAR and metformin similarly increased (P < 0.05) nuclear silent mating-type information regulator 2 homolog 1 (SIRT1) activity. Downregulation of AMPK-α(1) completely prevented the metformin-induced reduction in palmitate uptake and oxidation but only partially reduced the metformin-induced increase in glucose uptake. Downregulation of AMPK-α(2) had no effect on metformin-induced glucose uptake, palmitate uptake, and oxidation. The increase in SIRT1 activity induced by metformin was not affected by downregulation of either AMPK-α(1) or AMPK-α(2). Our data indicate that, in muscle cells, the inhibitory effects of metformin on fatty acid metabolism occur via preferential phosphorylation of AMPK-α(1), and the data indicate that cross talk between AMPK and SIRT1 does not favor either AMPK isozyme.

Collaboration


Dive into the Lorraine P. Turcotte's collaboration.

Top Co-Authors

Avatar

Marcia J. Abbott

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsey D. Bogachus

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alice J. Yee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michelle Z. Tucker

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Marcella A. Raney

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mark K. Todd

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Silvana Constantinescu

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Bente Kiens

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge