Lothar Beutin
Federal Institute for Risk Assessment
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lothar Beutin.
Journal of Clinical Microbiology | 2012
Flemming Scheutz; Louise D. Teel; Lothar Beutin; Denis Piérard; Glenn Buvens; Helge Karch; Alexander Mellmann; Alfredo Caprioli; Rosangela Tozzoli; Stefano Morabito; Nancy A. Strockbine; Angela R. Melton-Celsa; Maria Carmen Arroyo Sanchez; Søren Persson; Alison D. O'Brien
ABSTRACT When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.
Journal of Clinical Microbiology | 2004
Lothar Beutin; Gladys Krause; Sonja Zimmermann; Stefan Kaulfuss; Kerstin Gleier
ABSTRACT We have investigated 677 Shiga toxin-producing Escherichia coli (STEC) strains from humans to determine their serotypes, virulence genes, and clinical signs in patients. Six different Shiga toxin types (1, 1c, 2, 2c, 2d, and 2e) were distributed in the STEC strains. Intimin (eae) genes were present in 62.6% of the strains and subtyped into intimins α1, β1, γ1, ε, θ, and η. Shiga toxin types 1c and 2d were present only in eae-negative STEC strains, and type 2 was significantly (P < 0.001) more frequent in eae-positive STEC strains. Enterohemorrhagic E. coli hemolysin was associated with 96.2% of the eae-positive strains and with 65.2% of the eae-negative strains. Clinical signs in the patients were abdominal pain (8.7%), nonbloody diarrhea (59.2%), bloody diarrhea (14.3%), and hemolytic-uremic syndrome (HUS) (3.5%), and 14.3% of the patients had no signs of gastrointestinal disease or HUS. Infections with eae-positive STEC were significantly (P < 0.001) more frequent in children under 6 years of age than in other age groups, whereas eae-negative STEC infections dominated in adults. The STEC strains were grouped into 74 O:H types by serotyping and by PCR typing of the flagellar (fliC) genes in 221 nonmotile STEC strains. Eleven serotypes (O157:[H7], O26:[H11], O103:H2, O91:[H14], O111:[H8], O145:[H28], O128:H2, O113:[H4], O146:H21, O118:H16, and O76:[H19]) accounted for 69% of all STEC strains. We identified 41 STEC strains belonging to 31 serotypes which had not previously been described as human STEC. Twenty-six of these were positive for intimins α1 (one serotype), β1 (eight serotypes), ε (two serotypes), and η (three serotypes). Our study indicates that different types of STEC strains predominate in infant and adult patients and that new types of STEC strains are present among human isolates.
Journal of Clinical Microbiology | 2002
Wenlan Zhang; B. Köhler; Eric Oswald; Lothar Beutin; Helge Karch; Stefano Morabito; Alfredo Caprioli; S. Suerbaum; Herbert Schmidt
ABSTRACT In this study, we determined the sequences of four intimin variant genes detected in attaching and effacing Escherichia coli isolates of human origin. Three of them were novel and were designated eae-η (eta), eae-ι (iota), and eae-κ (kappa). The fourth was identical to the recently described eae-ζ (zeta), isolated from a bovine E. coli O84:NM isolate. We compared these sequences with those of published intimin-α, intimin-β, intimin-γ1, intimin-γ2, intimin-ε, and intimin-θ alleles. Sequence analysis of these 10 intimin alleles confirmed extensive genetic diversity within the intimin gene family in E. coli. The genetic diversity was more prominent in the 3′ region (starting at bp 2112), which encodes the binding domain of intimin. Phylogenetic analyses revealed four groups of closely related intimin genes: α and ζ; β and κ; γ1 and γ2/θ; and ε and η. Calculation of homoplasy ratios of sequences of the 5′ region of eae (positions 1 to 2111) revealed evidence for intragenic recombination. Split decomposition analysis also indicates that recombination events have played a role in the evolutionary history of eae. In conclusion, we recommend an eae nomenclature system based on the Greek alphabet and provide an updated PCR scheme for amplification and typing of E. coli eae.
Applied and Environmental Microbiology | 2007
Lothar Beutin; Angelika Miko; Gladys Krause; Karin Pries; Sabine Haby; Katja Steege; Nadine Albrecht
ABSTRACT We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx1 or variant genes were detected in 88 (40.2%) strains and stx2 and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx1, stx1c, and stx1d) and the Stx2 (stx2, stx2d, stx2-O118, stx2e, and stx2g) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx2 and/or mucus-activatable stx2d genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx2 and stx2d STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx2e), lamb, and wildlife meat (stx1c). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.
Journal of Food Protection | 2012
Lothar Beutin; Annett Martin
An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin-producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)-encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin-producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.
Journal of Clinical Microbiology | 2003
Istvan Toth; Fréderique Hérault; Lothar Beutin; Eric Oswald
ABSTRACT Three types of cytolethal distending toxin (CDT), namely, CDT-I, CDT-II, and CDT-III, have been described in Escherichia coli. Using primers designed for the detection of sequences common to the cdtB genes, we analyzed by PCR a set of 21 CDT-producing E. coli strains of intestinal and extraintestinal origins isolated from human and different animal species in several European countries and in the United States. On the basis of the existing differences in the cdtB genes, cdt-I-, cdt-II-, and cdt-III-specific primer pairs were designed and used for cdt typing. These new primers successfully differentiated all of the previously described cdt genes. Six strains proved to be cdt-I; eight strains proved to be cdt-III. However, none of the type I-, II-, and III-specific primers generated amplicons from six CDT+ strains, suggesting the existence of a new cdt variant. Sequence analysis of the amplicons from two untypeable genes confirmed the existence of a new cdt variant that we called cdt-IV. Using the new specific primers, cdt-IV was detected in human, porcine, and poultry strains of intestinal and extraintestinal origins. To validate all sets of cdt specific primers, a group of 353 human E. coli strains isolated in Hungary was then investigated for the presence of cdt genes. This included 190 strains isolated from patients with urinary tract infections (UTI), 51 strains isolated from other (nonurinary) extraintestinal infections, and 112 intestinal strains isolated from healthy individuals. Of 190 UTI strains, 15 (7.9%) had cdt genes. Of 51 non-UTI extraintestinal strains 3 (5.9%) contained the cdt gene, and 1 (0.9%) of 112 healthy intestinal strains was PCR positive. Five strains proved to be cdt-I, and fourteen strains proved to be cdt-IV. The CDT-producing extraintestinal strains belonged to a wide variety of serogroups, including O2, O6, O75, and O170. In conclusion, we have developed a new PCR typing system for CDT able to detect a new CDT variant present in pathogenic E. coli strains obtained from animals and humans.
International Journal of Food Microbiology | 2011
Annett Martin; Lothar Beutin
Shiga toxin-producing strains of Escherichia coli (STEC) cause diarrhoea and haemorrhagic colitis in humans. Most human infections are attributed to consumption of STEC contaminated foodstuff. Food producing animals constitute important reservoirs of STEC and serve as source of food contamination. In this study, we have analyzed 593 foodborne STEC strains for their serotypes and for nine virulence genes (stx1, stx1c, stx1d, stx2, stx2b, stx2e, stx2g, E-hly and eae). The 593 STEC strains grouped into 215 serotypes, and 123 serotypes (57.2%) were represented each by only one STEC isolate. Fifteen serotypes (7.0%) were attributed to 198 (33.3%) of the 593 STEC strains. The foodborne STEC were grouped into different categories in relation to the species of the food producing animal (cattle, pigs, sheep, goats, red deer, wild-boar and hare). Univariate and multivariate statistical analyses revealed significant similarities between the animal origin of the food and the virulence markers of foodborne STEC. Significant associations (p<0.001) were found for stx1 and for stx2 with bovine meat and milk products. The stx2e gene was significantly (p<0.001) associated with STEC from pork and wild boar meat. Stx1c and stx2b genes were significantly (p<0.001) more frequent in STEC from deer meat, as well as from meat and milk products derived from sheep and goats. Using logistic regression models we detected significant (p<0.01) combinations between stx1, stx2 and E-hly genes and STEC from bovine meat. The combination of stx1c and stx2b genes was significant (p<0.001) for STEC derived from red deer, sheep and goat products. The properties of foodborne STEC were compared with published data on faecal STEC from food producing animals. Virulence profiles and serotypes of STEC from food showed remarkable similarities to those of faecal STEC that were from the same animal species. The findings from our study clearly indicate that the food producing animals represent the most important source for the entry of STEC in the food chain. Sound hygiene measures implemented at critical stages of food production (milking, slaughtering, and evisceration) should be most effective in reducing the frequency of STEC contamination of food derived from domestic and wildlife animals.
Memorias Do Instituto Oswaldo Cruz | 2005
Marcia Regina Franzolin; Rosely Cabette Barbosa Alves; Rogéria Keller; Tânia A. T. Gomes; Lothar Beutin; Mauricio Lima Barreto; Craig A. Milroy; Agostino Strina; Hugo Ribeiro; Luiz R. Trabulsi
We report the frequency of the different diarrheagenic Escherichia coli (DEC) categories isolated from children with acute endemic diarrhea in Salvador, Bahia. The E. coli isolates were investigated by colony blot hybridization with the following genes probes: eae, EAF, bfpA, Stx1, Stx2, ST-Ih, ST-Ip, LT-I, LT-II, INV, and EAEC, as virulence markers to distinguish typical and atypical EPEC, EHEC/STEC, ETEC, EIEC, and EAEC. Seven of the eight categories of DEC were detected. The most frequently isolated was atypical EPEC (10.1%) followed by ETEC (7.5%), and EAEC (4.2%). EHEC, STEC, EIEC, and typical EPEC were each detected once. The strains of ETEC, EAEC, and atypical EPEC belonged to a wide variety of serotypes. The serotypes of the others categories were O26:H11 (EHEC), O21:H21 (STEC), O142:H34 (typical EPEC), and O:H55 (EIEC). We also present the clinical manifestations and other pathogenic species observed in children with DEC. This is the first report of EHEC and STEC in Salvador, and one of the first in Brazil.
BMC Microbiology | 2011
Marie Bugarel; Annett Martin; Patrick Fach; Lothar Beutin
BackgroundEnterohaemorrhagic E. coli (EHEC) can cause severe disease such as bloody diarrhoea and haemolytic uraemic syndrome in humans. Besides production of Shiga toxins, the presence of LEE (eae-gene) and non-LEE (nle) encoded effector genes harboured on O-islands OI-122, OI-71 and OI-57 is associated with EHEC virulence and their frequency in outbreaks. Genes encoded by the EHEC-plasmid are putative virulence markers of EHEC. EHEC-plasmids, LEE and non-LEE effector genes have also been detected in some strains of enteropathogenic E. coli (EPEC). The objective of this study was to analyze the relationship between EHEC and EPEC for virulence genes encoded by genomic O-islands and by the EHEC-plasmids.ResultsNle genes ent/espL2, nleB and nleE (OI-122), nleA, nleF and nleH1-2 (OI-71), nleG5-2 and nleG6-2 (OI-57), espK (CP-933N) and the EHEC-plasmid encoded genes ehxA, espP, etpD and katP were searched in 73 typical and in 235 atypical enteropathogenic E. coli (EPEC) strains. Typical and atypical EPEC each fall into two clusters. Cluster 1 typical (n = 46) and atypical (n = 129) EPEC strains were characterized by the presence of OI-122 encoded genes and grouped together with 64 investigated EHEC strains. Cluster 2 typical (n = 27) and atypical (n = 106) strains grouped together with 52 LEE-negative, Shiga toxin-producing E. coli (STEC) and with 21 apathogenic E. coli strains. Typical EPEC Cluster 1 strains belonged to serotypes frequently involved in severe illness and outbreaks in children (O111:H2, O114:H2, O55:H6, O127:H6 and O142:H6). Atypical EPEC Cluster 1 strains were characterized by serotypes related to EHEC (O26:H11, O55:H7, O145:H28, O103:H2 and O103:H25).ConclusionThe OI-122 encoded nleB gene was found to be most closely associated with Cluster 1 strains and may serve as a diagnostic tool for the identification of virulent EHEC and EPEC seropathotypes. OI-71 encoded genes nleA, nleF and nleH1-2 are less associated with Cluster 1 strains. EHEC-plasmid, OI-57 and CP-933 associated genes showed only weak similarities with virulent Cluster 1 EHEC and EPEC strains.
International Journal of Food Microbiology | 2012
Markus Tzschoppe; Annett Martin; Lothar Beutin
Human infections with Enterohaemorrhagic Escherichia coli strains (EHEC) as agents of Haemorrhagic Colitis (HC) and Haemolytic Uraemic Syndrome (HUS) are frequently associated with the consumption of EHEC contaminated foodstuffs of different origins. EHEC O26, O103, O111, O118, O121, O145 and O157 strains are responsible for the majority of HC and HUS cases worldwide. In May 2011, the emerging aggregative EHEC O104:H4 strain caused a large outbreak with high HUS incidence in northern Germany. Contaminated sprouted seeds were suspected to be the vehicles of transmission. The examination of vegetables retailed for raw consumption revealed low numbers of E. coli (<100 cfu/g) together with high titres of Enterobacteriaceae and Pseudomonas (approx. 5.6 × 10⁷ cfu/g). Specific methods of EHEC detection adapted to vegetables are not yet published. Therefore, we have developed a rapid and sensitive method for detecting low EHEC contamination in vegetables (1-10 cfu/25 g) with artificially EHEC contaminated ready-to-eat salads. A 6-hour enrichment period in BRILA-broth was sufficient to detect 1-10 EHEC from spiked samples after plating 0.1 ml portions of enrichment culture on selective TBX-agar and CHROMagar STEC plates that were incubated at 44 °C overnight. Unlike EHEC strains, the growth of bacteria of the plant flora was substantially inhibited at 44 °C. DNA for real-time PCR detection of EHEC characteristic genes (stx(1), stx(2), eae, ehxA, and O-antigen associated) was prepared with bacteria grown on TBX-agar plates. The storage of EHEC inoculated salad samples for 72 h at 6 °C resulted in a significant reduction (mean value 14.6%) of detectable EHEC, suggesting interference of EHEC with the resident plant microflora. CHROMagar STEC was evaluated as a selective medium for the detection of EHEC strains. Growth on CHROMagar STEC was closely associated with EHEC O26:[H11], O111:[H8], O118:H16, O121:[H19], O145:[H28], O157:[H7] and aggregative EHEC O104:H4 strains and with the presence of the terB gene (tellurite resistance). TerB sequences were found in 87.2% of 235 EHEC but only in only 12.5% of 567 non-EHEC strains. EHEC strains which did not grow on CHROMagar STEC were negative for terB as frequently observed with EHEC O103:H2 (52.9%) and sorbitol-fermenting O157:NM strains (100%). The enrichment and detection method was applied in the examination of sprouted seeds incriminated as vehicles in the EHEC O104:H4 outbreak in Germany. Aggregative EHEC O104:H4 could be detected and isolated from a sample of sprouted seeds which was suspected as vector of transmission of EHEC O104 to humans.