Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lothar Hennighausen is active.

Publication


Featured researches published by Lothar Hennighausen.


Nature Immunology | 2006

Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system.

Jason S. Stumhofer; Arian Laurence; Emma H. Wilson; Elaine Huang; Cristina M. Tato; Leanne M. Johnson; Alejandro V. Villarino; Qiulong Huang; Akihiko Yoshimura; David Sehy; Christiaan J. M. Saris; John J. O'Shea; Lothar Hennighausen; Matthias Ernst; Christopher A. Hunter

Studies have focused on the events that influence the development of interleukin 17 (IL-17)–producing T helper cells (TH-17 cells) associated with autoimmunity, such as experimental autoimmune encephalitis, but relatively little is known about the cytokines that antagonize TH-17 cell effector responses. Here we show that IL-27 receptor–deficient mice chronically infected with Toxoplasma gondii developed severe neuroinflammation that was CD4+ T cell dependent and was associated with a prominent IL-17 response. In vitro, treatment of naive primary T cells with IL-27 suppressed the development TH-17 cells induced by IL-6 and transforming growth factor-β, which was dependent on the intracellular signaling molecule STAT1 but was independent of inhibition of IL-6 signaling mediated by the suppressor protein SOCS3. Thus IL-27, a potent inhibitor of TH-17 cell development, may be a useful target for treating inflammatory diseases mediated by these cells.


Nature Genetics | 1999

Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation.

Xiaoling Xu; Kay Uwe Wagner; Denise M. Larson; Zoë Weaver; Cuiling Li; Thomas Ried; Lothar Hennighausen; Anthony Wynshaw-Boris; Chu-Xia Deng

Cre-mediated excision of exon 11 of the breast-tumour suppressor gene Brca1 in mouse mammary epithelial cells causes increased apoptosis and abnormal ductal development. Mammary tumour formation occurs after long latency and is associated with genetic instability characterized by aneuploidy, chromosomal rearrangements or alteration of Trp53 (encoding p53) transcription. To directly test the role of p53 in Brca1-associated tumorigenesis, we introduced a Trp53-null allele into mice with mammary epithelium-specific inactivation of Brca1. The loss of p53 accelerated the formation of mammary tumours in these females. Our results demonstrate that disruption of Brca1 causes genetic instability and triggers further alterations, including the inactivation of p53, that lead to tumour formation.


Oncogene | 2000

The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting{

Robert D. Cardiff; Miriam R. Anver; Barry A. Gusterson; Lothar Hennighausen; Roy A. Jensen; Maria J. Merino; Sabine Rehm; Jose Russo; Fattaneh A. Tavassoli; Lalage M. Wakefield; Jerrold M. Ward; Jeffrey E. Green

NIH sponsored a meeting of medical and veterinary pathologists with mammary gland expertise in Annapolis in March 1999. Rapid development of mouse mammary models has accentuated the need for definitions of the mammary lesions in genetically engineered mice (GEM) and to assess their usefulness as models of human breast disease. The panel of nine pathologists independently reviewed material representing over 90% of the published systems. The GEM tumors were found to have: (1) phenotypes similar to those of non-GEM; (2) signature phenotypes specific to the transgene; and (3) some morphological similarities to the human disease. The current mouse mammary and human breast tumor classifications describe the majority of GEM lesions but unique morphologic lesions are found in many GEM. Since little information is available on the natural history of GEM lesions, a simple morphologic nomenclature is proposed that allows direct comparisons between models. Future progress requires rigorous application of guidelines covering pathologic examination of the mammary gland and the whole animal. Since the phenotype of the lesions is an essential component of their molecular pathology, funding agencies should adopt policies ensuring careful morphological evaluation of any funded research involving animal models. A pathologist should be part of each research team.


Molecular and Cellular Biology | 2004

Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation.

Yongzhi Cui; Greg Riedlinger; Keiko Miyoshi; Wei Tang; Cuiling Li; Chu-Xia Deng; Gertraud W. Robinson; Lothar Hennighausen

ABSTRACT This study explored the functions of the signal transducers and activators of transcription 5a and 5b (referred to as Stat5 here) during different stages of mouse mammary gland development by using conditional gene inactivation. Mammary gland morphogenesis includes cell specification, proliferation and differentiation during pregnancy, cell survival and maintenance of differentiation throughout lactation, and cell death during involution. Stat5 is activated by prolactin, and its presence is mandatory for the proliferation and differentiation of mammary epithelium during pregnancy. To address the question of whether Stat5 is also necessary for the maintenance and survival of the differentiated epithelium, the two genes were deleted at different time points. The 110-kb Stat5 locus in the mouse was bracketed with loxP sites, and its deletion was accomplished by using two Cre-expressing transgenic lines. Loss of Stat5 prior to pregnancy prevented epithelial proliferation and differentiation. Deletion of Stat5 during pregnancy, after mammary epithelium had entered Stat5-mediated differentiation, resulted in premature cell death, indicating that at this stage epithelial cell proliferation, differentiation, and survival require Stat5.


Nature Reviews Molecular Cell Biology | 2005

Information networks in the mammary gland

Lothar Hennighausen; Gertraud W. Robinson

Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.


Developmental Cell | 2001

Signaling Pathways in Mammary Gland Development

Lothar Hennighausen; Gertraud W. Robinson

Unlike most other organs, development of the mammary gland occurs predominantly after birth, under the control of steroid and peptide hormones. Once the gland is established, cycles of proliferation, functional differentiation, and death of alveolar epithelium occur repeatedly with each pregnancy. Although it is unique in this respect, the signaling pathways utilized by the gland are shared with other cell types, and have been tailored to meet the needs of this secretory tissue. Here we discuss the signaling pathways that have been adopted by the mammary gland for its own purposes, and the functions they perform.


Immunity | 1997

An Indirect Effect of Stat5a in IL-2–Induced Proliferation: A Critical Role for Stat5a in IL-2–Mediated IL-2 Receptor α Chain Induction

Hiroshi Nakajima; Xiuwen Liu; Anthony Wynshaw-Boris; Louis A. Rosenthal; Kazunori Imada; David S. Finbloom; Lothar Hennighausen; Warren J. Leonard

Stat5a was identified as a prolactin-induced transcription factor but also is activated by other cytokines, including interleukin-2 (IL-2) and IL-7. We have now analyzed the immune system of Stat5a-deficient mice. Stat5a-/- splenocytes exhibited defective IL-2-induced expression of the IL-2 receptor alpha chain (IL-2R alpha), a protein that together with IL-2R beta and the common cytokine receptor gamma chain (gamma(c)) mediates high-affinity IL-2 binding. Correspondingly, Stat5a-/- splenocytes exhibited markedly decreased proliferation to IL-2, although maximal proliferation was still achieved at IL-2 concentrations high enough to titrate intermediate-affinity IL-2R beta/gamma(c) receptors. Thus, defective Stat5a expression results in diminished proliferation by an indirect mechanism, resulting from defective receptor expression. Correspondingly, we show that Stat5a is essential for maximal responsiveness to antigenic stimuli in vivo, underscoring the physiological importance of IL-2-induced IL-2R alpha expression.


Journal of Cell Biology | 2001

Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium

Keiko Miyoshi; Jonathan M. Shillingford; Gilbert H. Smith; Sandra L. Grimm; Kay-Uwe Wagner; Takami Oka; Jeffrey M. Rosen; Gertraud W. Robinson; Lothar Hennighausen

Functional development of mammary epithelium during pregnancy depends on prolactin signaling. However, the underlying molecular and cellular events are not fully understood. We examined the specific contributions of the prolactin receptor (PrlR) and the signal transducers and activators of transcription 5a and 5b (referred to as Stat5) in the formation and differentiation of mammary alveolar epithelium. PrlR- and Stat5-null mammary epithelia were transplanted into wild-type hosts, and pregnancy-mediated development was investigated at a histological and molecular level. Stat5-null mammary epithelium developed ducts but failed to form alveoli, and no milk protein gene expression was observed. In contrast, PrlR-null epithelium formed alveoli-like structures with small open lumina. Electron microscopy revealed undifferentiated features of organelles and a perturbation of cell–cell contacts in PrlR- and Stat5-null epithelia. Expression of NKCC1, an Na-K-Cl cotransporter characteristic for ductal epithelia, and ZO-1, a protein associated with tight junction, were maintained in the alveoli-like structures of PrlR- and Stat5-null epithelia. In contrast, the Na-Pi cotransporter Npt2b, and the gap junction component connexin 32, usually expressed in secretory epithelia, were undetectable in PrlR- and Stat5-null mice. These data demonstrate that signaling via the PrlR and Stat5 is critical for the proliferation and differentiation of mammary alveoli during pregnancy.


Journal of Neuroendocrinology | 1996

Deficiency in Mouse Oxytocin Prevents Milk Ejection,but not Fertility or Parturition

W. Scott Young; Emily Shepard; Janet A. Amico; Lothar Hennighausen; Kay Uwe Wagner; Mary E. LaMarca; Cindy E. McKinney; Edward I. Ginns

Oxytocin is a nonapeptide hormone that participates in the regulation of parturition and lactation. It has also been implicated in various behaviors, such as mating and maternal, and memory. To investigate whether or not oxytocin (OT) is essential for any of these functions, we eliminated, by homologous recombination, most of the first intron and the last two exons of the OT gene in mice. Those exons encode the neurophysin portion of the oxytocin preprohormone which is hypothesized to help in the packaging and transport of OT. The homozygous mutant mice have no detectable neurophysin or processed oxytocin in the paraventricular nucleus, supraoptic nucleus or posterior pituitary. Interestingly, homozygous mutant males and females are fertile and the homozygous mutant females are able to deliver their litters. However, the pups do not successfully suckle and die within 24 h without milk in their stomachs. OT injection into the dams restores the milk ejection in response to suckling. These results indicate an absolute requirement for oxytocin for successful milk ejection, but not for mating, parturition and milk production, in mice.


Transgenic Research | 2001

Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice

Kay Uwe Wagner; Toni Ward; Barbara J. Davis; Roger Wiseman; Lothar Hennighausen

Cre-loxP based gene deletion approaches hold great promise to enhance our understanding of molecular pathways controlling mammary development and breast cancer. We reported earlier the generation of transgenic mice that express the Cre recombinase under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). These mice have become a valuable research tool to delete genes specifically in the mammary gland, other secretory organs, and the female germline. We have now characterized in depth the expression of the MMTV-Cre transgene using the ROSA26-lox-Stop-lox-LacZ reporter strain to determine the temporal and spatial activation of Cre on the level of single cells. Our results show that MMTV-mediated Cre-activation is restricted to specific cell types of various secretory tissues and the hematopoietic system. Secondly, the timing of Cre expression varies between tissues and cell types. Some tissues express Cre during embryonic development, while other selected cell types highly activate Cre around puberty, suggesting a strong influence of steroid hormones on the transcriptional activation of the MMTV-LTR. Thirdly, Cre expression in the female germline is restricted to individual mouse lines and is therefore dependent on the site of integration of the transgene. Information provided by this study will guide the researcher to those cell types and developmental stages at which a phenotype can be expected upon deletion of relevant genes.

Collaboration


Dive into the Lothar Hennighausen's collaboration.

Top Co-Authors

Avatar

Gertraud W. Robinson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kay Uwe Wagner

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Kyung Hyun Yoo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuwen Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongzhi Cui

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Keunsoo Kang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chaochen Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Wall

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge