Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lothar Jänsch is active.

Publication


Featured researches published by Lothar Jänsch.


Plant Physiology | 2003

New Insights into the Respiratory Chain of Plant Mitochondria. Supercomplexes and a Unique Composition of Complex II

Holger Eubel; Lothar Jänsch; Hans-Peter Braun

A project to systematically investigate respiratory supercomplexes in plant mitochondria was initiated. Mitochondrial fractions from Arabidopsis, potato (Solanum tuberosum), bean (Phaseolus vulgaris), and barley (Hordeum vulgare) were carefully treated with various concentrations of the nonionic detergents dodecylmaltoside, Triton X-100, or digitonin, and proteins were subsequently separated by (a) Blue-native polyacrylamide gel electrophoresis (PAGE), (b) two-dimensional Blue-native/sodium dodecyl sulfate-PAGE, and (c) two-dimensional Blue-native/Blue-native PAGE. Three high molecular mass complexes of 1,100, 1,500, and 3,000 kD are visible on one-dimensional Blue native gels, which were identified by separations on second gel dimensions and protein analyses by mass spectrometry. The 1,100-kD complex represents dimeric ATP synthase and is only stable under very low concentrations of detergents. In contrast, the 1,500-kD complex is stable at medium and even high concentrations of detergents and includes the complexes I and III2. Depending on the investigated organism, 50% to 90% of complex I forms part of this supercomplex if solubilized with digitonin. The 3,000-kD complex, which also includes the complexes I and III, is of low abundance and most likely has a III4I2 structure. The complexes IV, II, and the alternative oxidase were not part of supercomplexes under all conditions applied. Digitonin proved to be the ideal detergent for supercomplex stabilization and also allows optimal visualization of the complexes II and IV on Blue-native gels. Complex II unexpectedly was found to be composed of seven subunits, and complex IV is present in two different forms on the Blue-native gels, the larger of which comprises additional subunits including a 32-kD protein resembling COX VIb from other organisms. We speculate that supercomplex formation between the complexes I and III limits access of alternative oxidase to its substrate ubiquinol and possibly regulates alternative respiration. The data of this investigation are available at http://www.gartenbau.uni-hannover.de/genetik/braun/AMPP.


Molecular & Cellular Proteomics | 2006

Characterization of the Drosophila Lipid Droplet Subproteome

Mathias Beller; Dietmar Riedel; Lothar Jänsch; Guido Dieterich; Jürgen Wehland; Herbert Jäckle; Ronald P. Kühnlein

Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 proteins identified in a subproteome analysis using lipid storage droplets of Drosophila melanogaster fat body tissue. In addition to previously known lipid droplet-associated PAT (Perilipin, ADRP, and TIP47) domain proteins and homologues of several mammalian lipid droplet proteins, this study identified a number of proteins of diverse biological function, including intracellular trafficking supportive of the dynamic and multifaceted character of these organelles. We performed intracellular localization studies on selected newly identified subproteome members both in tissue culture cells and in fat body cells directly. The results suggest that the lipid droplets of fat body cells are of combinatorial protein composition. We propose that subsets of lipid droplets within single cells are characterized by a protein “zip code,” which reflects functional differences or specific metabolic states.


Antimicrobial Agents and Chemotherapy | 2006

Quorum-Sensing Antagonistic Activities of Azithromycin in Pseudomonas aeruginosa PAO1: a Global Approach

Yusuf Nalca; Lothar Jänsch; Florian Bredenbruch; Robert Geffers; Jan Buer; Susanne Häussler

ABSTRACT The administration of macrolides such as azithromycin for chronic pulmonary infection of cystic fibrosis patients has been reported to be of benefit. Although the mechanisms of action remain obscure, anti-inflammatory effects as well as interference of the macrolide with Pseudomonas aeruginosa virulence factor production have been suggested to contribute to an improved clinical outcome. In this study we used a systematic approach and analyzed the impact of azithromycin on the global transcriptional pattern and the protein expression profile of P. aeruginosa PAO1 cultures versus those in untreated controls. The most remarkable result of this study is the finding that azithromycin exhibited extensive quorum-sensing antagonistic activities. In accordance with the inhibition of the quorum-sensing systems, virulence factor production was diminished and the oxidative stress response was impaired, whereas the type III secretion system was strongly induced. Moreover, P. aeruginosa motility was reduced, which probably accounts for the previously observed impaired biofilm formation capabilities of azithromycin-treated cultures. The interference of azithromycin with quorum-sensing-dependent virulence factor production, biofilm formation, and oxidative stress resistance in P. aeruginosa holds great promise for macrolide therapy in cystic fibrosis. Clearly quorum-sensing antagonist macrolides should be paid more attention in the management of chronic P. aeruginosa infections, and as quorum-sensing antagonists, macrolides might gain vital importance for more general application against chronic infections.


Journal of Biological Chemistry | 2006

Carbonic Anhydrase Subunits Form a Matrix-exposed Domain Attached to the Membrane Arm of Mitochondrial Complex I in Plants

Stephanie Sunderhaus; Natalya V. Dudkina; Lothar Jänsch; Jennifer Klodmann; Jesco Heinemeyer; Mariano Perales; Eduardo Zabaleta; Egbert J. Boekema; Hans-Peter Braun

Complex I of Arabidopsis includes five structurally related subunits representing γ-type carbonic anhydrases termed CA1, CA2, CA3, CAL1, and CAL2. The position of these subunits within complex I was investigated. Direct analysis of isolated subcomplexes of complex I by liquid chromatography linked to tandem mass spectrometry allowed the assignment of the CA subunits to the membrane arm of complex I. Carbonate extraction experiments revealed that CA2 is an integral membrane protein that is protected upon protease treatment of isolated mitoplasts, indicating a location on the matrix-exposed side of the complex. A structural characterization by single particle electron microscopy of complex I from the green alga Polytomella and a previous analysis from Arabidopsis indicate a plant-specific spherical extra-domain of about 60 Å in diameter, which is attached to the central part of the membrane arm of complex I on its matrix face. This spherical domain is proposed to contain a heterotrimer of three CA subunits, which are anchored with their C termini to the hydrophobic arm of complex I. Functional implications of the complex I-integrated CA subunits are discussed.


Plant Molecular Biology | 2004

Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits

A. Harvey Millar; Holger Eubel; Lothar Jänsch; Volker Kruft; Joshua L. Heazlewood; Hans-Peter Braun

Respiratory oxidative phosphorylation represents a central functionality in plant metabolism, but the subunit composition of the respiratory complexes in plants is still being defined. Most notably, complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) are the least defined in plant mitochondria. Using Arabidopsis mitochondrial samples and 2D Blue-native/SDS-PAGE, we have separated complex II and IV from each other and displayed their individual subunits for analysis by tandem mass spectrometry and Edman sequencing. Complex II can be discretely separated from other complexes on Blue-native gels and consists of eight protein bands. It contains the four classical SDH subunits as well as four subunits unknown in mitochondria from other eukaryotes. Five of these proteins have previously been identified, while three are newly identified in this study. Complex IV consists of 9–10 protein bands, however, it is more diffuse in Blue-native gels and co-migrates in part with the translocase of the outer membrane (TOM) complex. Differential analysis of TOM and complex IV reveals that complex IV probably contains eight subunits with similarity to known complex IV subunits from other eukaryotes and a further six putative subunits which all represent proteins of unknown function in Arabidopsis. Comparison of the Arabidopsis data with Blue-native/SDS-PAGE separation of potato and bean mitochondria confirmed the protein band complexity of these two respiratory complexes in plants. Two-dimensional Blue-native/Blue-native PAGE, using digitonin followed by dodecylmaltoside in successive dimensions, separated a diffusely staining complex containing both TOM and complex IV. This suggests that the very similar mass of these complexes will likely prevent high purity separations based on size. The documented roles of several of the putative complex IV subunits in hypoxia response and ozone stress, and similarity between new complex II subunits and recently identified plant specific subunits of complex I, suggest novel biological insights can be gained from respiratory complex composition analysis.


The Plant Cell | 2010

Internal Architecture of Mitochondrial Complex I from Arabidopsis thaliana

Jennifer Klodmann; Stephanie Sunderhaus; Manfred Nimtz; Lothar Jänsch; Hans-Peter Braun

The NADH dehydrogenase complex (complex I) represents the largest functional module of the respiratory chain and at the same time is the least known. Based on a novel biochemical strategy, a model on its internal structure is presented. In plants, complex I comprises several extra protein subunits that partially integrate side activities into the complex and contribute to its special shape. The NADH dehydrogenase complex (complex I) of the respiratory chain has unique features in plants. It is the main entrance site for electrons into the respiratory electron transfer chain, has a role in maintaining the redox balance of the entire plant cell and additionally comprises enzymatic side activities essential for other metabolic pathways. Here, we present a proteomic investigation to elucidate its internal structure. Arabidopsis thaliana complex I was purified by a gentle biochemical procedure that includes a cytochrome c–mediated depletion of other respiratory protein complexes. To examine its internal subunit arrangement, isolated complex I was dissected into subcomplexes. Controlled disassembly of the holo complex (1000 kD) by low-concentration SDS treatment produced 10 subcomplexes of 550, 450, 370, 270, 240, 210, 160, 140, 140, and 85 kD. Systematic analyses of subunit composition by mass spectrometry gave insights into subunit arrangement within complex I. Overall, Arabidopsis complex I includes at least 49 subunits, 17 of which are unique to plants. Subunits form subcomplexes analogous to the known functional modules of complex I from heterotrophic eukaryotes (the so-called N-, Q-, and P-modules), but also additional modules, most notably an 85-kD domain including γ-type carbonic anhydrases. Based on topological information for many of its subunits, we present a model of the internal architecture of plant complex I.


Molecular Microbiology | 2006

The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes

Kathrin Thedieck; Torsten Hain; Walid Mohamed; Brian J. Tindall; Manfred Nimtz; Trinad Chakraborty; Jürgen Wehland; Lothar Jänsch

Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR‐dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L‐PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Δlmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.


Environmental Microbiology | 2009

Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons

Katharina Trunk; Beatrice Benkert; Nicole Quäck; Richard Münch; Maurice Scheer; Julia Garbe; Lothar Jänsch; Matthias Trost; Jürgen Wehland; Jan Buer; Martina Jahn; Max Schobert; Dieter Jahn

The anaerobic metabolism of the opportunistic pathogen Pseudomonas aeruginosa is important for growth and biofilm formation during persistent infections. The two Fnr-type transcription factors Anr and Dnr regulate different parts of the underlying network in response to oxygen tension and NO. Little is known about all members of the Anr and Dnr regulons and the mediated immediate response to oxygen depletion. Comprehensive transcriptome and bioinformatics analyses in combination with a limited proteome analyses were used for the investigation of the P. aeruginosa response to an immediate oxygen depletion and for definition of the corresponding Anr and Dnr regulons. We observed at first the activation of fermentative pathways for immediate energy generation followed by induction of alternative respiratory chains. A solid position weight matrix model was deduced from the experimentally identified Anr boxes and used for identification of 170 putative Anr boxes in potential P. aeruginosa promoter regions. The combination with the experimental data unambiguously identified 130 new members for the Anr and Dnr regulons. The basis for the understanding of two regulons of P. aeruginosa central to biofilm formation and infection is now defined.


Molecular & Cellular Proteomics | 2007

Proteomics Analysis of Protein Kinases by Target Class-selective Prefractionation and Tandem Mass Spectrometry

Josef Wissing; Lothar Jänsch; Manfred Nimtz; Guido Dieterich; Renate Hornberger; György Kéri; Jürgen Wehland; Henrik Daub

Protein kinases constitute a large superfamily of enzymes with key regulatory functions in nearly all signal transmission processes of eukaryotic cells. However, due to their relatively low abundance compared with the vast majority of cellular proteins, currently available proteomics techniques do not permit the comprehensive biochemical characterization of protein kinases. To address these limitations, we have developed a prefractionation strategy that uses a combination of immobilized low molecular weight inhibitors for the selective affinity capture of protein kinases. This approach resulted in the direct purification of cell type-specific sets of expressed protein kinases, and more than 140 different members of this enzyme family could be detected by LC-MS/MS. Furthermore the enrichment technique combined with phosphopeptide fractionation led to the identification of more than 200 different phosphorylation sites on protein kinases, which often remain occluded in global phosphoproteome analysis. As the phosphorylation states of protein kinases can provide a readout for the signaling activities within a cellular system, kinase-selective phosphoproteomics based on the procedures described here has the potential to become an important tool in signal transduction analysis.


Cell Host & Microbe | 2009

IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation

Stefanie M. Weiss; Markus Ladwein; Dorothea Schmidt; Julia Ehinger; Silvia Lommel; Kai Städing; Ulrike Beutling; Andrea Disanza; Ronald Frank; Lothar Jänsch; Giorgio Scita; Florian Gunzer; Klemens Rottner; Theresia E. B. Stradal

Actin pedestal formation by pathogenic E. coli requires signaling by the bacterial intimin receptor Tir, which induces host cell actin polymerization mediated by N-WASP and the Arp2/3 complex. Whereas canonical enteropathogenic E. coli (EPEC) recruit these actin regulators through tyrosine kinase signaling cascades, enterohemorrhagic E. coli (EHEC) O157:H7 employ the bacterial effector EspF(U) (TccP), a potent N-WASP activator. Here, we show that IRSp53 family members, key regulators of membrane and actin dynamics, directly interact with both Tir and EspF(U). IRSp53 colocalizes with EspF(U) and N-WASP in actin pedestals. In addition, targeting of IRSp53 is independent of EspF(U) and N-WASP but requires Tir residues 454-463, previously shown to be essential for EspF(U)-dependent actin assembly. Genetic and functional loss of IRSp53 abrogates actin assembly mediated by EHEC. Collectively, these data indentify IRSp53 family proteins as the missing host cell factors linking bacterial Tir and EspF(U) in EHEC pedestal formation.

Collaboration


Dive into the Lothar Jänsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Wissing

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Kärst

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorsten Johl

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudia Hundertmark

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge