Lotta Arborelius
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lotta Arborelius.
Naunyn-schmiedebergs Archives of Pharmacology | 1993
Lotta Arborelius; Karima Chergui; Sumio Murase; George G. Nomikos; Berit Backlund Höök; Guy Chouvet; Uli Hacksell; Torgny H. Svensson
SummaryThe effects of the selective 5-HT1A receptor agonist (R)-8-hydroxy-2(di-n-propylamino)tetralin [(R)-8-OH-DPAT] and the novel 5-HT1A antagonist (S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin [(S)-UH-301] were studied with regard to the firing pattern of single mesencephalic dopamine (DA) neurons with extracellular recording techniques in chloral hydrate anesthetized male rats. Neuronal activity was studied with respect to firing rate, burst firing and regularity of firing. In the ventral tegmental area (VTA) low doses of (R)-8-OH-DPAT (2–32 μg/kg i.v.) caused an increase in all three parameters. The effect on firing rate of DA neurons was more pronounced in the parabrachial pigmentosus nucleus than in the paranigral nucleus, the two major subdivisions of VTA. In the substantia nigra zona compacta (SN-ZC), (R)-8-OH-DPAT (2–256 μg/kg i.v.) had no effect on firing rate and regularity of firing and only slightly increased burst firing. High doses of (R)-8-OH-DPAT (512–1024 μg/kg i.v.) decreased the activity of DA cells in both areas, an effect that was prevented by pretreatment with the selective DA D2 receptor antagonist raclopride. (S)-UH-301 (100–800 μg/kg i.v.) decreased both firing rate and burst firing without affecting regularity of DA neurons in the VTA. In the SN-ZC, (S)-UH-301 decreased the firing rate but failed to affect burst firing and regularity of firing. These effects of (S)-UH-301 were blocked by raclopride pretreatment. Local application by pneumatic ejection of 8-OH-DPAT excited the DA cells in both the VTA and the SN-ZC, whereas (S)-UH-301 inhibited these cells when given locally. These results show that 5-HT1A receptor related compounds differentially affect the electrophysiological activity of central DA neurons. The DA receptor agonistic properties of these compound appear to contribute to the inhibitory effects of high doses of (R)-8-OH-DPAT and (S)-UH-301 on DA neuronal activity. Given the potential use of 5-HT1A receptor selective compounds in the treatment of anxiety and depression their effects on central DA systems involved in mood regulation and reward related processes are of considerable importance.
Neuroscience | 2007
Lotta Arborelius; M.B. Eklund
Adverse experiences early in life are associated with an increased incidence of later psychopathology including depression. Based on evidence that dysfunction of central monoaminergic systems is involved in the pathophysiology of depression, we hypothesize that early adversity could negatively affect these systems. To test this we have investigated the effects of maternal separation, which has been suggested to model early-life stress and the development of a depression-like syndrome in the rat, on brain monoaminergic systems. Since depression is more common in women and the risk of developing this disorder appears to increase with age, we have studied such effects in middle-aged female rats. Rat pups were separated for 180 min (long maternal separation; LMS) or 15 min (brief maternal separation; BMS, often referred to as neonatal handling) twice daily for 2 weeks postpartum. An animal facility-reared (AFR) group was also included. At 15 months of age tissue levels of monoamines and their metabolites in several different brain regions were analyzed. In the LMS females tissue levels of both 5-HT and 5-hydroxyindole acetic acid (5-HIAA) were significantly increased in the dorsal raphe nucleus, and 5-HIAA and homovanillic acid levels were also elevated in the nucleus accumbens as compared with AFR and BMS rats. In the cingulate cortex both LMS and BMS decreased noradrenaline (NA) levels, although this effect was more pronounced in the LMS rats. On the other hand, BMS decreased 5-HT, 5-HIAA, dopamine (DA) as well as NA levels in the amygdala and produced an increase in DA levels in response to acute stress in the hypothalamus, an effect not seen in AFR rats. Our results demonstrate that LMS produced persistent alterations in both serotonergic, noradrenergic and dopaminergic systems in brain regions that have been suggested to be implicated in the pathophysiology of depression. In addition, BMS affected brain monoaminergic levels mainly in the amygdala.
Naunyn-schmiedebergs Archives of Pharmacology | 1996
Lotta Arborelius; George G. Nomikos; Peter Hertel; Peter Salmi; Pernilla Grillner; Berit Backlund Höök; Uli Hacksell; Torgny H. Svensson
In a recent study, utilizing single cell recording techniques, we have shown that administration of 5-HT1A receptor antagonists, e.g. (S)-UH-301, to rats concomitantly treated, acute or chronically, with the selective serotonin reuptake inhibitor (SSRI) citalopram significantly increases the activity of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN). Here we report correlative experiments using microdialysis in freely moving animals to measure extracellular levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in the frontal cortex, a major projection area for DRN-5-HT neurons. Acute administration of (S)-UH-301 (2.5 mg/kg s.c.) or citalopram (2.0 mg/kg s.c.) increased 5-HT concentrations with a maximum of about 70% and 185%, respectively, above baseline. However, when (S)UH-301 was administered 30 min before citalopram the maximal increase in 5-HT levels was approximately 400%. In rats chronically treated with citalopram (20 mg/kg/day i.p. for 14 days) basal 5-HT concentrations in the frontal cortex were significantly increased and 5-HIAA concentrations were decreased when measured 10–12 h, but not 18–20 h, after the last injection of citalopram, as compared to basal 5-HT and 5-HIAA concentrations in chronic saline-treated rats. When (S)-UH-301 (2.5 mg/kg s.c.) was administered 12 h, but not 20 h, after the last dose of citalopram it produced a significantly larger increase in extracellular concentrations of 5-HT than in control rats. However, in rats pretreated with a single, very high dose of citalopram, 20 mg/kg i.p., administration of (S)-UH-301 at 12 h after citalopram did not increase 5-HT levels.The augmentation by (S)-UH-301 of the increase in brain 5-HT output produced by acute administration of citalopram is probably due to antagonism of the citalopram induced feedback inhibition of 5-HT cells in the DRN, as previously suggested. However, the capacity of (S)-UH-301 to further increase the already elevated extracellular concentrations of 5-HT in brain in animals maintained on a chronic citalopram regimen, in which significant tolerance to the initial feedback inhibition of DRN-5-HT cells had developed, represents a novel finding. Generally, the reduced feedback inhibition of 5-HT neurons obtained with chronic citalopram treatment, and the associated elevation of brain 5-HT concentrations, may be related to functional desensitization of somatodendritic 5-HT1A autoreceptors in the DRN. This phenomenon may also largely explain the larger increase in 5-HT output produced by (S)-UH-301 in chronic citalopram treated animals as compared to its effect in control animals. Yet, a contributory factor may be a slight, remaining feedback inhibition of the 5-HT cells caused by residual citalopram at 12, but not 20 h after its last administration.Previous clinical studies suggest that addition of a 5-HT1A receptor antagonist to an SSRI in the treatment of depression may accelerate the onset of clinical effects. Moreover, in therapy-resistant cases maintained on SSRI treatment, addition of a 5-HT1A receptor antagonist may improve clinical efficacy. Since the therapeutic effect of SSRIs in depression has been found to be critically linked to the availability of 5-HT in brain, our experimental results support, in principle, both of the above clinically based notions.
Naunyn-schmiedebergs Archives of Pharmacology | 1995
Lotta Arborelius; George G. Nomikos; Pernilla Grillner; Peter Hertel; Berit Backlund Höök; Uli Hacksell; Torgny H. Svensson
In this study we have examined the acute effects of systemic administration of the selective serotonin reuptake inhibitor (SSRI), citalopram, in combination with either of the two selective 5-HT1A receptor antagonists, (S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin [(S)-UH-301] or (+)-N-tertbutyl 3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropionamide dihydrochloride [(+)-WAY100135], on the activity of single 5-HT neurons in the dorsal raphe nucleus (DRN) of anesthetized rats using extracellular recording techniques. Acute administration of citalopram (0.3 mg/kg i.v.) significantly decreased the firing rate of DRN-5-HT cells most likely as a result of indirect stimulation of inhibitory somatodendritic 5-HT1A autoreceptors located on 5-HT cells in the DRN. This effect of citalopram was completely reversed by (S)-UH-301 (0.5 mg/kg i.v.) and partly by (+)WAY100135 (0.5 mg/kg i.v.). Furthermore, the inhibitory effect of citalopram on the activity of 5-HT neurons was significantly attenuated by pretreatment with (S)-UH-301 (0.25 mg/kg i.v.) or (+)-WAY100135 (0.25 mg/kg i.v.).We have also studied the effects of (S)-UH-301 (0.03–0.50 mg/kg i.v.) on the firing rate of single DRN5-HT cells in rats chronically treated with citalopram (20 mg/kg/day i.p. × 14 days). Administration of (S)UH-301 significantly and dose-dependently increased the activity of 5-HT cells in citalopram-treated rats, but did not affect these neurons in saline-treated (1 m1/kg/day i.p. × 14 days), control rats. Our results thus suggest that 5-HT1A receptor antagonists can augment both the acute and chronic effects of citalopram on central serotonergic neurotransmission. Since the antidepressant effect of SSRIs is critically linked to the availability of 5-HT, these findings support the notion that 5-HT1A receptor antagonists may not only shorten the latency of onset of SSRIs in the treatment of depression, but also increase their efficacy.
Brain Behavior and Immunity | 2007
Anna Andreasson; Lotta Arborelius; Charlotte Erlanson-Albertsson; Mats Lekander
Impaired appetite and weight changes are commonly seen in patients with depression, but the pathophysiology behind this imbalance between energy intake and energy expenditure remains largely unknown. The aim of this paper is to review the literature regarding a possible role for cytokines in the regulation of appetite and body weight, with special emphasis on depression. There now exists a substantial amount of evidence that depressed patients show signs of immune activation including increased levels of proinflammatory cytokines. Cytokines, which by themselves have anorectic properties, stimulate the release of the cytokine-like anorexogenic peptide leptin. In addition to their anorectic properties, both proinflammatory cytokines and leptin interact with the hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system (SNS) and the immune system. In turn, these systems regulate energy balance as well as they are dysfunctional in depression. Furthermore, both proinflammatory cytokines and leptin can induce anhedonia, one of the cardinal symptoms of depression. In view of the different effects on appetite and/or body weight observed in melancholic versus atypical depression, we suggest that cytokines are differentially altered in these subtypes of depression, and that this may explain some of the inconsistency in the reported findings of cytokine as well as leptin levels in depressed patients. Finally, we propose that the immune system uses the interoceptive pathway projecting to the insular cortex, a brain region where cytokine-induced changes in appetite could be partly mediated, and that this pathway is activated in depression.
Neuropsychopharmacology | 1997
Peter Hertel; George G. Nomikos; Björn Schilström; Lotta Arborelius; Torgny H. Svensson
We have previously shown that risperidone, an antipsychotic drug with high affinity for 5-hydroxytryptamine (5-HT)2A and dopamine (DA)2 receptors, as well as for α1- and α2-adrenoceptors, enhances 5-HT metabolism selectively in the rat frontal cortex (FC). To further study the influence of risperidone on central 5-HT systems, we compared its effects on dialysate 5-HT in the FC, as assessed by microdialysis, with those obtained with other antipsychotic drugs, i.e., clozapine, haloperidol, and amperozide, as well as with the selective α2- or 5-HT2A receptor antagonists idazoxan or MDL 100,907, respectively. The underlying mechanism for risperidone’s effect on 5-HT output in the FC was also investigated using single-cell recording in the dorsal raphe nucleus (DRN). Administration of risperidone (0.2, 0.6, and 2.0 mg/kg, SC) dose-dependently increased 5-HT levels in the FC. This stimulatory action was mimicked by amperozide (10 mg/kg, SC) and, to some extent, by idazoxan (0.25 mg/kg, SC). In contrast, clozapine (10 mg/kg, SC), haloperidol (2.0 mg/kg, SC), and MDL 100,907 (1.0 mg/kg, SC) exerted only minor effects on 5-HT output in brain. Local administration of risperidone or idazoxan (1.0–1000 μmol/L) in the FC dose-dependently increased dialysate levels of 5-HT in this region. On the other hand, risperidone 25-800 μg/kg, IV) dose-dependently decreased the firing rate of 5-HT cells in the DRN, an effect that was largely antagonized by pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 μg/kg, IV). These results indicate that the risperidone-increased 5-HT output in the FC may be related to its α2-adrenoceptor antagonistic action, a property shared with both amperozide and idazoxan, and that this action probably is executed at the nerve terminal level. The inhibition of 5-HT cell firing by risperidone is probably secondary to increased 5-HT availability, e.g., in the DRN, since it could be antagonized by a 5-HT1A receptor antagonist. The enhanced 5-HT output in the FC by risperidone may be of particular relevance for the treatment of schizophrenia when associated with depression and in schizoaffective disorder.
Behavioural Brain Research | 2006
Malin Eklund; Lotta Arborelius
Prolonged daily separations of rat pups from their mother have been reported to increase anxiety-like behaviour in adult offspring. However, there are an increasing number of studies not showing this. It has been proposed that the effect of long maternal separation (LMS) is partly due to the disruption of maternal care caused by the separations. The aim of the present study was to investigate whether increasing the number of daily separations would produce more robust effects in the adult offspring on anxiety-like behaviour in the defensive withdrawal test, and on spontaneous motor activity. Since previous studies of LMS have revealed sex differences in behaviour, we included both males and females. In our separation paradigm we subjected rat pups to either two daily 3h maternal separations during the first 2 weeks postpartum (LMS), two daily 15 min maternal separations (brief maternal separations, BMS) during the same time period to control for the effects of handling, or to normal husbandry conditions. As adults we found no effects of this LMS paradigm in male rats, although BMS males showed a tendency toward decreased anxiety-like behaviour. In contrast, LMS females showed a decrease in anxiety-like behaviour. We also found significant sex differences that were most prominent in the LMS group, indicating that females are more sensitive to our maternal separation paradigm. The present study suggests that increasing the number of maternal separations does not increase anxiety-like behaviour in neither male nor female Wistar rats.
European Journal of Pharmacology | 1992
George G. Nomikos; Lotta Arborelius; Torgny H. Svensson
Previous studies have demonstrated that the novel 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) analogue (S)-5-fluoro-8-hydroxy-2-(dipropylamino)tetralin ((S)-UH-301) is able to antagonize several behavioural and biochemical effects of the 5-HT1A receptor agonist 8-OH-DPAT in the rat. In the present study in vivo microdialysis was used to evaluate the effects of (S)-UH-301 on interstitial concentrations of 5-hydroxytryptamine (5-HT), its metabolite 5-hydroxyindoloacetic acid (5-HIAA), and the catecholamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the dorsal hippocampus of freely moving rats. Furthermore, the effects of (S)-UH-301 on (R)-8-OH-DPAT-induced changes in dialysate hippocampal concentrations of 5-HT and metabolites were examined. Neither 5-HT nor metabolites were significantly influenced by (S)-UH-301 (1.25, 2.5, 5.0 mg/kg s.c.). In contrast, (R)-8-OH-DPAT (100 micrograms/kg s.c.) decreased interstitial concentrations of 5-HT (to 45% of baseline) and 5-HIAA (to 75%), and increased concentrations of DOPAC (to 165%) and HVA (to 155%). Pretreatment with (S)-UH-301 (2.5 mg/kg s.c.) 20 min before (R)-8-OH-DPAT (100 micrograms/kg s.c.) abolished the 5-HT and metabolite response to (R)-8-OH-DPAT. These data indicate that (S)-UH-301 is able to antagonize (R)-8-OH-DPAT-induced biochemical effects in vivo without producing any effects when given alone. Thus, the present study contributes to the characterization of (S)-UH-301 as a 5-HT1A receptor antagonist with low intrinsic activity.
Journal of Neural Transmission | 2004
Love Linnér; Charlotte Wiker; Lotta Arborelius; Martin Schalling; Torgny H. Svensson
Summary.Present pharmacotherapy of major depression is, in principle, based on enhancement of central monoaminergic neurotransmission. Clinical studies utilizing depletion experiments indicate that antidepressants which primarily enhance serotonergic or noradrenergic central activity, i.e. serotonin or nor-adrenaline reuptake inhibitors, largely work by two separate neuronal pathways. However, experimental studies have shown that noradrenaline may regulate serotonergic neurotransmission both at the serotonin cell body and nerve-terminal level. We therefore investigated the effects of the selective NRI reboxetine on serotonergic neuronal activity and extracellular levels of transmitter in the nerve-terminal area. In vivo electrophysiological experiments showed that low doses of reboxetine significantly enhance the firing rate of serotonergic neurons in the dorsal raphe nucleus of anaesthetized rats. Also, in the medial prefrontal cortex reboxetine (3 mg/kg s.c.) enhanced, whereas citalopram (3 mg/kg s.c.) reduced, extracellular concentrations of serotonin measured by means of microdialysis in awake rats, using a low dose of citalopram (0,5 µM) in the perfusion solution. Local administration of reboxetine only induced an increase in cortical serotonin levels at very high concentrations (1000 µM). Hence, NRIs may cause a secondary enhancement of central serotonergic activity by a mechanism separate from 5-HT reuptake inhibition; an effect that may contribute to their clinical antidepressant efficacy.
Journal of Neural Transmission | 1994
Lotta Arborelius; B. Backlund Höök; Uli Hacksell; Torgny H. Svensson
(S)-UH-301 [(S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin, 0.5–4.0 mg/kg i.V.] did not significantly alter the firing rate of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN) as a group, although some individual cells were activated whereas others were depressed. However, (S)-UH-301 (2.0mg/kg i.v.) consistently reversed the inhibition of DRN-5-HT cells produced by the selective 5-HT1A receptor agonist (R)-8-OH-DPAT (0.5 μg/kg i.v.) and the dose-response curve for this effect of (R)-8-OH-DPAT was markedly shifted to the right by pretreatment with (S)-UH-301 (1.0mg/kg i.v.). These results support the notion that (S)-UH-301 acts as an antagonist at central 5-HT1A receptors.