Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lotta Vrang is active.

Publication


Featured researches published by Lotta Vrang.


Antimicrobial Agents and Chemotherapy | 2010

In Vitro Resistance Profile of the Hepatitis C Virus NS3/4A Protease Inhibitor TMC435

Oliver Lenz; Thierry Verbinnen; Tse-I Lin; Leen Vijgen; Maxwell D. Cummings; Jimmy Lindberg; Jan Martin Berke; Pascale Dehertogh; Els Fransen; Annick Scholliers; Katrien Vermeiren; Tania Ivens; Pierre Jean-Marie Bernard Raboisson; Michael Edlund; Susan Storm; Lotta Vrang; Herman de Kock; Gregory Fanning; Kenneth Alan Simmen

ABSTRACT TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC50s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to ∼2,000-fold for those with the D168V or D168I mutation, compared to the EC50 for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC50s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC50s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.


Antimicrobial Agents and Chemotherapy | 2009

In Vitro Activity and Preclinical Profile of TMC435350, a Potent Hepatitis C Virus Protease Inhibitor

Tse-I Lin; Oliver Lenz; Gregory Fanning; Thierry Verbinnen; Frédéric Delouvroy; Annick Scholliers; Katrien Vermeiren; Åsa Rosenquist; Michael Edlund; Bertil Samuelsson; Lotta Vrang; Herman de Kock; Piet Tom Bert Paul Wigerinck; Pierre Jean-Marie Bernard Raboisson; Kenneth Simmen

ABSTRACT The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC50) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC99 value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure–activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350

Pierre Jean-Marie Bernard Raboisson; Herman de Kock; Åsa Rosenquist; Magnus Nilsson; Lourdes Salvador-Oden; Tse-I Lin; Natalie Roue; Vladimir Ivanov; Horst Wähling; Kristina Wickström; Elizabeth Hamelink; Michael Edlund; Lotta Vrang; Sandrine Marie Helene Vendeville; Wim Van de Vreken; David McGowan; Abdellah Tahri; Lili Hu; Carlo Willy Maurice Boutton; Oliver Lenz; Frédéric Delouvroy; Geert Pille; Dominique Surleraux; Piet Tom Bert Paul Wigerinck; Bertil Samuelsson; Kenneth Simmen

SAR analysis performed with a limited set of cyclopentane-containing macrocycles led to the identification of N-[17-[2-(4-isopropylthiazole-2-yl)-7-methoxy-8-methylquinolin-4-yloxy]-13-methyl-2,14-dioxo-3,13-diazatricyclo [13.3.0.0(4,6)]octadec-7-ene-4-carbonyl](cyclopropyl)sulfonamide (TMC435350, 32c) as a potent inhibitor of HCV NS3/4A protease (K(i)=0.36nM) and viral replication (replicon EC(50)=7.8nM). TMC435350 also displayed low in vitro clearance and high permeability, which were confirmed by in vivo pharmacokinetic studies. TMC435350 is currently being evaluated in the clinics.


AIDS | 1997

Prevention of simian immunodeficiency virus, SIVsm, or HIV-2 infection in cynomolgus monkeys by pre- and postexposure administration of BEA-005

D. Böttiger; Nils-Gunnar Johansson; Bengt Samuelsson; Hong Zhang; Per Putkonen; Lotta Vrang; Bo Öberg

Objective:To study the possibilities and limitations of postexposure treatment to prevent the establishment of infection after accidental exposure to HIV. Design and methods:The effect of 2′,3′-dideoxy-3′-hydroxymethyl cytidine (BEA-005) was investigated on acute simian immunodeficiency virus (SIV) and HIV-2 infections in macaques in pre- and postexposure treatment experiments. Results:Postexposure treatment with BEA-005 (3 x 10 mg/kg) for as short as 3 days prevented infection with SIVsm after intravenous or rectal inoculation. Infection with HIV-2 could also be blocked by postexposure BEA-005 treatment. Conclusion:This study shows that therapeutic intervention can block early systemic and mucosal infections with SIV and HIV-2. Further evaluation is ongoing.


Journal of Medicinal Chemistry | 1999

Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationship studies of PETT analogues

Marita Högberg; Christer Sahlberg; Per Engelhardt; Rolf Noreen; Jussi Kangasmetsä; Nils Gunnar Johansson; Bo Öberg; Lotta Vrang; Hong Zhang; Britt-Louise Sahlberg; Torsten Unge; Seved Lövgren; Kerstin Fridborg

The further development of allosteric HIV-1 RT inhibitors in the urea analogue series of PETT (phenylethylthiazolylthiourea) derivatives is described here. The series includes derivatives with an ethyl linker (1-5) and racemic (6-16) and enantiomeric (17-20) cis-cyclopropane compounds. The antiviral activity was determined both at the RT level and in cell culture on both wild-type and mutant forms of HIV-1. Most compounds have anti-HIV-1 activity on the wt in the nanomolar range. Resistant HIV-1 was selected in vitro for some of the compounds, and the time for resistant HIV-1 to develop was longer for urea-PETT compounds than it was for reference compounds. Preliminary pharmacokinetics in rats showed that compound 18 is orally bioavailable and penetrates well into the brain. The three-dimensional structure of complexes between HIV-1 RT and two enantiomeric compounds (17 and 18) have been determined. The structures show similar binding in the NNI binding pocket. The propionylphenyl moieties of both inhibitors show perfect stacking to tyrosine residues 181 and 188. The cyclopropyl moiety of the (+)-enantiomer 18 exhibits optimal packing distances for the interactions with leucine residue 100 and valine residue 179.


Angewandte Chemie | 2010

Induced-Fit Binding of the Macrocyclic Noncovalent Inhibitor TMC435 to its HCV NS3/NS4A Protease Target

Maxwell D. Cummings; Jimmy Lindberg; Tse-I Lin; Herman de Kock; Oliver Lenz; Elisabet Lilja; Sara Felländer; Vera Baraznenok; Susanne Nyström; Magnus Nilsson; Lotta Vrang; Michael Edlund; Åsa Rosenquist; Bertil Samuelsson; Pierre Jean-Marie Bernard Raboisson; Kenneth Simmen

The NS3 protein of hepatitis C virus (HCV), together with the NS4A peptide co-factor, comprises 685 residues and possesses domain-specific RNA helicase and serine protease activities. NS3/NS4A protease activity is essential to the HCV life cycle. Small-molecule inhibitors of NS3/NS4A protease have been widely explored and are typically grouped into two classes: linear peptidomimetics with a ketoamide functionality that reacts with the catalytic Ser to form a reversible enzyme–inhibitor adduct, and noncovalent peptidomimetics containing a macrocycle (e.g. Figure 1); macrocyclic ketoamide inhibitors have also been reported. Macrocycles, underrepresented in synthetic drugs, are helpful in improving the druglike character of molecules. TMC435 (1; Figure 1), a macrocyclic noncovalent inhibitor of NS3/NS4A protease with subnanomolar Ki values for genotype 1a and 1b NS3/ NS4A proteases, 11] was discovered by optimizing an earlier NS3/NS4A protease inhibitor, BILN-2061 (2 ; Figure 1). Key steps in the progression from 2 to 1 include reduction of macrocycle size, truncation of the P4 (P3 capping) group, conversion of the carboxylate “head group” to an acylsulfonamide, replacement of the P2 proline pyrrolidine with a cyclopentyl ring, and optimization of the substituted quinoline-thiazole ring system (Figure 1). 14–16] Despite exceeding three of four Lipinski criteria, 1 shows excellent pharmacokinetics in humans. We have determined the crystal structure of 1 bound to its NS3/NS4A protease target from the BK strain of genotype 1b HCV at a resolution of 2.4 (Figure 2; see Table S1 and Figure S1 in the Supporting Information). The threedimensional structure of the NS3 protease domain in complex with a truncated version of the NS4A cofactor was first reported in 1996, and that of an engineered single-chain NS3/NS4A protease–helicase construct in 1999. Currently there are multiple covalent NS3/NS4A protease–inhibitor complexes accessible at the PDB. This structure is the first noncovalent NS3/NS4A protease–inhibitor complex to be deposited at the PDB. Additionally, the new structure shows that the large P2 substituent of 1 induces an extended S2 subsite to accommodate this group; none of the previously available complex structures share this feature. We analyze the observed induced-fit binding of 1 to HCV NS3/NS4A protease, discuss key in vitro resistance mutations in the context of the complex, and disclose the new crystal structure for public analysis. The structure of the NS3/NS4A–1 complex shows the expected trypsin-like fold for the enzyme, with the inhibitor bound at the active site, spanning the S3–S1’ subsites (Figure 2; see Figure S1 in the Supporting Information). Unlike many other macrocyclic drugs that can be divided into functional (binding) and modulator (nonbinding) domains, essentially all of 1 is involved in binding to its target site (Figure 2). Two canonical substrate-like intermolecular hydrogen bonds are observed: the P1–P2 backbone amide N contacts Arg155:O, and the carbonyl O of the P2–P3 amide Figure 1. Macrocyclic (1, 2) and ketoamide (3) inhibitors of HCV NS3/ NS4A protease. Substrate positions from NS3/NS4A protease complex structures are indicated for 1 and 3.


Antiviral Research | 1995

Inhibition of human immunodeficiency virus type 1 wild-type and mutant reverse transcriptases by the phenyl ethyl thiazolyl thiourea derivatives trovirdine and MSC-127

Hong Zhang; Lotta Vrang; Peter Thomas Lind; Christer Sahlberg; Torsten Unge; Bo Öberg

A new class of very potent and selective non-nucleoside inhibitors of HIV reverse transcriptase (RT) has recently been identified. The prototype compound trovirdine (LY 300046 HCl) and one analogue, MSC-127, have been studied with respect to inhibition of wild-type HIV-1 RT and RT with various mutations known to give rise to resistance to other non-nucleoside RT inhibitors, namely Leu100-->Ile (Ile100), Glu138-->Arg (Arg138), Tyr181-->Cys (Cys181) and Tyr188-->His (His188). The inhibition of HIV-1 RT by trovirdine and MSC-127 was reversible and template dependent. Trovirdine inhibited HIV-1 RT with an IC50 of 0.007 microM when employing heteropolymeric primer/template (oligo-DNA/ribosomal RNA) and dGTP as substrate. Enzyme kinetic studies showed that inhibition of RT by trovirdine was non-competitive with regard to deoxynucleoside triphosphates and uncompetitive with respect to varied primer/template under steady-state conditions. The amino acid changes Leu100, Tyr181 and Tyr188 gave rise to 25-, 147- and 12-fold decrease in inhibition by trovirdine. Enzyme-kinetic studies on trovirdine have been carried out using various RT mutants and compared to the properties of the earlier reported non-nucleoside RT inhibitors 9-Cl-TIBO, nevirapine and L-697,661.


Journal of Biomolecular Screening | 2000

Characterization of a set of HIV-1 protease inhibitors using binding kinetics data from a biosensor-based screen

Markku Hämäläinen; Per-Olof Markgren; Wesley Schaal; Anders Karlén; Björn Classon; Lotta Vrang; Bertil Samuelsson; Anders Hallberg; U. Helena Danielson

The interaction between 290 structurally diverse human immunodeficiency virus type 1 (HIV-1) protease inhibitors and the immobilized enzyme was analyzed with an optical biosensor. Although only a single concentration of inhibitor was used, information about the kinetics of the interaction could be obtained by extracting binding signals at discrete time points. The statistical correlation between the biosensor binding data, inhibition of enzyme activity (K;), and viral replication (EC50) revealed that the association and dissociation rates for the interaction could be resolved and that they were characteristic for the compounds. The most potent inhibitors, with respect to K; and EC50 values, including the clinically used drugs, all exhibited fast association and slow dissociation rates. Selective or partially selective binders for HIV-1 protease could be distinguished from compounds that showed a general protein-binding tendency by using three reference target proteins. This biosensor-based direct binding assay revealed a capacity to efficiently provide high-resolution information on the interaction kinetics and specificity of the interaction of a set of compounds with several targets simultaneously.


Bioorganic & Medicinal Chemistry Letters | 2000

Bioisosteric modification of PETT-HIV-1 RT-inhibitors: synthesis and biological evaluation

Marita Högberg; Per Engelhardt; Lotta Vrang; Hong Zhang

Bioisosteric substitution of the thiourea (3, 5, 7, 9) and urea (10) moiety of PETT compounds with sulfamide (1), cyanoguanidine (2, 4) and guanidine (6, 8) functionalities, and replacement of the phenethyl group with benzoylethyl group (compounds 11-20) have been studied. Synthesis and antiviral activities are described.


Bioorganic & Medicinal Chemistry Letters | 1998

Synthesis and anti-HIV activities of urea-pETT analogs belonging to a new class of potent non-nucleoside HIV-1 Reverse transcriptase inhibitors

Christer Sahlberg; Rolf Noreen; Per Engelhardt; Marita Högberg; Jussi Kangasmetsä; Lotta Vrang; Hong Zhang

A series of potent specific HIV-1 RT inhibitory compounds is described. The compounds are urea analogs of PETT (PhenylEthylThiazoleThiourea) derivatives and the series includes derivatives with an ethyl linker (1-6) and conformationally restricted analogs (7-13). The antiviral activity is determined both at the RT level and in cell culture on both native and mutant forms of HIV-1. Many compounds display activity in the nM range against wt-RT.

Collaboration


Dive into the Lotta Vrang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Öberg

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge