Louis De Grandpré
Natural Resources Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louis De Grandpré.
Journal of Vegetation Science | 1993
Louis De Grandpré; Daniel Gagnon; Yves Bergeron
We investigated changes in the composition and abundance of understory species after fire in the southern boreal forest around Lake Duparquet, Quebec. Ten plots of 100m2 were sampled in each of eight sites varying in post-fire age from 26 to 230 yr, with 20 1-m2 quadrats in each of these 80 plots. Variation in the understory was described by DCA ordination and interpreted as a regeneration succession series. Thickness of the organic layers, stand age and canopy compo- sition were all correlated with vegetational change. This change was not constant throughout succession; some old sites showed an increase in the diversity and abundance of certain pioneer species. This was partly related to openings in the canopy resulting from a major outbreak of spruce budworm, which affected sites dominated by Abies balsamea. The ordinations were performed on both the 100-m2 plots and the 1-m2 quad- rats. Heterogeneity within sites was larger at the 1-m2 scale and there was a great deal of overlap in the position of the quadrats in ordination space. At the smaller scale of analysis, stand age and thickness of the organic layers were not corre- lated with the changes observed in the understory.
Journal of Vegetation Science | 2000
Louis De Grandpré; Yves Bergeron
Abstract. In order to describe and compare the post-fire succession patterns of the two ecological regions (mixed-wood and coniferous ecoregions) of northwestern Quebec, 260 forest stands were sampled with the point-centred plot method. The mixed-wood ecological region belongs to the Abies balsamea-Betula papyrifera bioclimatic domain whereas the coniferous ecological region belongs to the Picea mariana-moss bioclimatic domain. In each plot, tree composition was described, surficial deposits and drainage were recorded, and fire history was reconstructed using standard dendro-ecological methods. Ordination techniques (Correspondence Analysis and Canonical Correspondence Analysis) were used to describe the successional patterns of forest vegetation and to correlate them with the explanatory variables. The results showed the importance of surficial deposits, the time since fire and the ecoregion in explaining the variation of stand composition. Abies balsamea tends to increase in importance with an increase in time since fire, and this trend is more pronounced in the mixed-wood region. Even when controlling both for surficial deposits and time since fire, differences in successional trends were observed between the two ecoregions. As all the species are present in both ecoregions and as they are all observed further north, our results suggest that both the landscape configuration and fire regime parameters such as fire size and fire intensity are important factors involved in these differences.
Journal of Vegetation Science | 2000
Louis De Grandpré; Jacques Morissette
. Natural dynamics in the boreal forest is influenced by disturbances. Fire recurrence affects community development and landscape diversity. Forest development was studied in the northeastern boreal forest of Quebec. The objective was to describe succession following fire and to assess the factors related to the changes in forest composition and structure. The study area is located in northeastern Quebec, 50 km north of Baie-Comeau. We used the forest inventory data gathered by the Ministere des Ressources naturelles du Quebec (MRNQ). In circular plots of 400 m2, the diameter at breast height (DBH) of all stems of tree species greater than 10 cm was recorded and in 40 m2 subplots, stems smaller than 10 cm were measured. A total of 380 plots were sampled in an area of 6000 km2. The fire history reconstruction was done based on historical maps, old aerial photographs and field sampling. A time-since-fire class, a deposit type, slope, slope aspect and altitude were attributed to each plot. Each plot was also described according to species richness and size structure characteristics. Traces of recent disturbance were also recorded in each plot. Changes in forest composition were described using ordination analyses (NMDS and CCA) and correlated with the explanatory variables. Two successional pathways were observed in the area and characterized by the early dominance of intolerant hardwood species or Picea mariana. With time elapsed since the last fire, composition converged towards either Picea mariana, Abies balsamea or a mixture of both species and the size structure of the coniferous dominated stands got more irregular. The environmental conditions varied between stands and explained part of the variability in composition. Their effect tended to decrease with increasing time elapsed since fire, as canopy composition was getting more similar. Gaps may be important to control forest dynamics in old successional communities.
Ecoscience | 2006
Dominique Boucher; Louis De Grandpré
ABSTRACT The influence of stand age and site conditions on the structure of coniferous stands was studied in the boreal forest of Québecs Côte-Nord, a region with low fire recurrence. Stand diameter diversity was measured in 2202 forest inventory plots in black spruce (Picea mariana), balsam fir (Abies balsamea), and mixed stands using the Shannon-Wiener diversity index. A relative productivity index was developed based on the relationship between height and age of dominant trees. A stepwise regression analysis indicated that this productivity index best explains stand structure variation in all composition types, while stand age seems to influence structure more at the beginning of stand development. The results suggest that productive stands become uneven-sized earlier than unproductive stands and also maintain a greater diameter diversity. These contrasting structural dynamics may be explained by (i) a higher growth rate in richer stands that likely induces earlier senescence and thus an earlier passage to an uneven-sized structure and (ii) a restricted maximum tree diameter in poor stands caused by a scarcity of resources, which in turn reduces the diameter diversity of these stands, even after their break-up time.
Ecology | 2015
Deepa Pureswaran; Louis De Grandpré; David Paré; Anthony R. Taylor; Martin Barrette; Hubert Morin; Jacques Régnière; Daniel Kneeshaw
Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects, and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences for the provisioning of goods and services from these forests and for long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. Although spruce budworm outbreak centers have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments, and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species, and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.
Journal of Vegetation Science | 1998
Daniel Kneeshaw; Yves Bergeron; Louis De Grandpré
. Small-scale canopy openings are being increasingly recognized for their importance in boreal forest stand development. Yet more work is necessary to understand their effects on seedling growth. This study investigated the effect of different degrees of canopy opening (all trees cut, conifers cut, conifers girdled and control quadrats) in different stand types on Abies balsamea seedling recruitment, growth and architecture. The lack of a treatment effect on seedling establishment suggests that gaps primarily affect advance regeneration. In the first year after treatment the seedlings in the cut blocks (both conifer cut and all trees cut) responded with an increase in height growth. Changes in the leader to lateral branch ratio were also significant. Continued architectural change in terms of number of branches produced did not occur until after two years had passed. Although not significantly different from the control, increases can be observed in all measurements for the girdled treatment. It is therefore concluded that the growth response of advance regeneration is more important following canopy opening than new seedling recruitment and that seedling performance is greatest where degree of opening is greatest.
Journal of Vegetation Science | 2006
Karen A. Harper; Yves Bergeron; Pierre Drapeau; Louis De Grandpré
Abstract Questions: How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location: Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods: Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non-parametric analyses were used to analyse trends with time and differences among structural components and site types. Results: Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4 - 8 m). Few significant differences were found among site types. Conclusions: During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification. Abbreviations: 3TLQV = Three-term local quadrat variance; NLV = New local variance.
Annales Botanici Fennici | 2009
Marie-Noëlle Caron; Daniel Kneeshaw; Louis De Grandpré; Heikki Kauhanen; Timo Kuuluvainen
Emulating natural disturbances in managed forests has been suggested as a potential solution to maintain habitat conditions similar to those observed in old-growth forests. We examined the gap attributes and disturbance history of old-growth Picea abies-dominated stands in the northern boreal vegetation zone of the Pallas-Yllästunturi National Park in northwestern Finland to evaluate the influence of gaps on forest dynamics and the temporal patterns of gap creation. Six stands located at two sites were sampled along 400-m-long linear transects so that all intersected gaps were measured and dated. The average proportion of the forest area in the gaps was 43.1% ± 7.5%. An average gap size was estimated to be 221 m2 ± 198 m2, whereas the median gap size was 170.2 m2. While only 20% of the gaps were smaller than 100 m2, nearly 85% of them were smaller than 300 m2. Gap creation was constant with no distinct peaks from 1965 to 2005. Thus, forest dynamics were driven by continuous small-scale disturbances and were characterized by quasi-equilibrium structure. However, the results of the growth release analysis indicated that more severe disturbance(s) may have occurred almost two centuries ago. Emulating this type of forest dynamics would imply selective or group harvesting of trees as the predominant methods, but larger-scale, more intensive cuttings could also be carried out periodically.
Global Change Biology | 2016
Yan Boulanger; David R. Gray; Barry J. Cooke; Louis De Grandpré
Climate change will modify forest pest outbreak characteristics, although there are disagreements regarding the specifics of these changes. A large part of this variability may be attributed to model specifications. As a case study, we developed a consensus model predicting spruce budworm (SBW, Choristoneura fumiferana [Clem.]) outbreak duration using two different predictor data sets and six different correlative methods. The model was used to project outbreak duration and the uncertainty associated with using different data sets and correlative methods (=model-specification uncertainty) for 2011-2040, 2041-2070 and 2071-2100, according to three forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5). The consensus model showed very high explanatory power and low bias. The model projected a more important northward shift and decrease in outbreak duration under the RCP 8.5 scenario. However, variation in single-model projections increases with time, making future projections highly uncertain. Notably, the magnitude of the shifts in northward expansion, overall outbreak duration and the patterns of outbreaks duration at the southern edge were highly variable according to the predictor data set and correlative method used. We also demonstrated that variation in forcing scenarios contributed only slightly to the uncertainty of model projections compared with the two sources of model-specification uncertainty. Our approach helped to quantify model-specification uncertainty in future forest pest outbreak characteristics. It may contribute to sounder decision-making by acknowledging the limits of the projections and help to identify areas where model-specification uncertainty is high. As such, we further stress that this uncertainty should be strongly considered when making forest management plans, notably by adopting adaptive management strategies so as to reduce future risks.
Canadian Journal of Forest Research | 2004
Anh Thu Pham; Louis De Grandpré; Yves Bergeron