Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis Dubeau is active.

Publication


Featured researches published by Louis Dubeau.


Cancer Research | 2008

Critical Role of the Stress Chaperone GRP78/BiP in Tumor Proliferation, Survival, and Tumor Angiogenesis in Transgene-Induced Mammary Tumor Development

Dezheng Dong; Min Ni; Jianze Li; Shigang Xiong; Wei Ye; Jenilyn J. Virrey; Changhui Mao; Risheng Ye; Miao Wang; Ligaya Pen; Louis Dubeau; Susan Groshen; Florence M. Hofman; Amy S. Lee

The unfolded protein response (UPR) is an evolutionarily conserved mechanism that activates both proapoptotic and survival pathways to allow eukaryotic cells to adapt to endoplasmic reticulum (ER) stress. Although the UPR has been implicated in tumorigenesis, its precise role in endogenous cancer remains unclear. A major UPR protective response is the induction of the ER chaperone GRP78/BiP, which is expressed at high levels in a variety of tumors and confers drug resistance in both proliferating and dormant cancer cells. To determine the physiologic role of GRP78 in in situ-generated tumor and the consequence of its suppression on normal organs, we used a genetic model of breast cancer in the Grp78 heterozygous mice where GRP78 expression level was reduced by about half, mimicking anti-GRP78 agents that achieve partial suppression of GRP78 expression. Here, we report that Grp78 heterozygosity has no effect on organ development or antibody production but prolongs the latency period and significantly impedes tumor growth. Our results reveal three major mechanisms mediated by GRP78 for cancer progression: enhancement of tumor cell proliferation, protection against apoptosis, and promotion of tumor angiogenesis. Importantly, although partial reduction of GRP78 in the Grp78 heterozygous mice substantially reduces the tumor microvessel density, it has no effect on vasculature of normal organs. Our findings establish that a key UPR target GRP78 is preferably required for pathophysiologic conditions, such as tumor proliferation, survival, and angiogenesis, underscoring its potential value as a novel therapeutic target for dual antitumor and antiangiogenesis activity.


Lancet Oncology | 2008

The cell of origin of ovarian epithelial tumours.

Louis Dubeau

Although it is widely believed that ovarian epithelial tumours arise in the coelomic epithelium that covers the ovarian surface, it has been suggested that they could instead arise from tissues that are embryologically derived from the Müllerian ducts. This article revisits this debate by discussing recent epidemiological and molecular biological findings as well as evidence based on histopathological observations of surgical specimens from individuals with familial ovarian cancer predisposition. Morphological, embryological, and molecular biological characteristics of ovarian epithelial tumours that must be accounted for in formulating a theory about their cell of origin are reviewed, followed by comments about the ability of these two hypotheses to account for each of these characteristics. An argument is made that primary ovarian epithelial tumours, fallopian tube carcinomas, and primary peritoneal carcinomas are all Müllerian in nature and could therefore be regarded as a single disease entity. Although a substantial proportion of cancers currently regarded as of primary ovarian origin arise in the fimbriated end of the fallopian tube, this site cannot account for all of these tumours, some of which are most likely derived from components of the secondary Müllerian system.


Cell Metabolism | 2015

A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan

Sebastian Brandhorst; In Young Choi; Min Wei; Chia Wei Cheng; Sargis Sedrakyan; Gerardo Navarrete; Louis Dubeau; Li Peng Yap; Ryan Park; Manlio Vinciguerra; Stefano Di Biase; Hamed Mirzaei; Mario G. Mirisola; Patra Childress; Lingyun Ji; Susan Groshen; Fabio Penna; Patrizio Odetti; Laura Perin; Peter S. Conti; Yuji Ikeno; Brian K. Kennedy; Pinchas Cohen; Todd E. Morgan; Tanya B. Dorff; Valter D. Longo

Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.


Mutation Research | 1999

Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential.

Guang-zhi Qu; Louis Dubeau; Ajita Narayan; Mimi C. Yu; Melanie Ehrlich

Rearrangements in heterochromatin in the vicinity of the centromeres of chromosomes 1 and 16 are frequent in many types of cancer, including ovarian epithelial carcinomas. Satellite 2 DNA is the main sequence in the unusually long heterochromatin region adjacent to the centromere of each of these chromosomes. Rearrangements in these regions and hypomethylation of satellite 2 DNA are a characteristic feature of patients with a rare recessive genetic disease, ICF (immunodeficiency, centromeric region instability, and facial anomalies). In all normal tissues of postnatal somatic origin, satellite 2 DNA is highly methylated. We examined satellite 2 DNA methylation in ovarian tumors of different malignant potential, namely, ovarian cystadenomas, low malignant potential (LMP) tumors, and epithelial carcinomas. Most of the carcinomas and LMP tumors exhibited hypomethylation in satellite 2 DNA of both chromosomes 1 and 16. A comparison of methylation of these sequences in the three types of ovarian neoplasms demonstrated that there was a statistically significant correlation between the extent of this satellite DNA hypomethylation and the degree of malignancy (P<0.01). Also, there was a statistically significant association (P<0.005) between genome-wide hypomethylation and undermethylation of satellite 2 DNA among these 17 tumors. In addition, we found abnormal hypomethylation of satellite alpha DNA in the centromere of chromosome 1 in many of these tumors. Our findings are consistent with the hypothesis that one of the ways that genome-wide hypomethylation facilitates tumor development is that it often includes satellite hypomethylation which might predispose cells to structural and numerical chromosomal aberrations. Several of the proteins that bind to pericentromeric heterochromatin are known to be sensitive to the methylation status of their target sequences and so could be among the sensors for detecting abnormal demethylation and mediating effects on chromosome structure and stability.


Oncogene | 2006

Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors

Melanie Ehrlich; Christian Woods; Mimi C. Yu; Louis Dubeau; Fan Yang; Mihaela Campan; Daniel J. Weisenberger; Tiffany I. Long; Byungwoo Youn; Emerich Fiala; Peter W. Laird

How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5′-gene region or promoter hypermethylation, satellite, or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, six of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P<0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor the cause of satellite and global DNA hypomethylation.


Cell Death & Differentiation | 2010

Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis

Miao Wang; Risheng Ye; Ernesto Barron; Peter Baumeister; Changhui Mao; Shengzhan Luo; Yong Fu; Biquan Luo; Louis Dubeau; David R. Hinton; Amy S. Lee

Neurodegenerative diseases are often associated with dysfunction in protein quality control. The endoplasmic reticulum (ER), a key site for protein synthesis, senses stressful conditions by activating the unfolded protein response (UPR). In this study we report the creation of a novel mouse model in which GRP78/BiP, a major ER chaperone and master regulator of UPR, is specifically eliminated in Purkinje cells (PCs). GRP78-depleted PCs activate UPR including the induction of GRP94, PDI, CHOP and GADD34, feedback suppression of eIF2α phosphorylation and apoptotic cell death. In contrast to current models of protein misfolding in which an abnormal accumulation of ubiquitinated protein is prominent, cytosolic ubiquitin staining is dramatically reduced in GRP78-null PCs. Ultrastructural evaluation reveals that the ER shows prominent dilatation with focal accumulation of electron-dense material within the ER. The mice show retarded growth and severe motor coordination defect by week 5 and cerebellar atrophy by week 13. Our studies uncover a novel link between GRP78 depletion and reduction in cytosolic ubiquitination and establish a novel mouse model of accelerated cerebellar degeneration with basic and clinical applications.


Journal of Clinical Investigation | 1989

Human decidua is a major source of renin.

Kathy J. Shaw; Yung S. Do; S Kjos; Pamela W. Anderson; Tatsuo Shinagawa; Louis Dubeau; Willa A. Hsueh

Plasma prorenin levels are elevated in normal pregnant women. Current evidence suggests renin production by tissues of the uteroplacental unit contribute to this elevation. The purpose of this investigation was to define the source of renin biosynthesis within the human uteroplacental unit and to characterize the renin produced. RNA extraction and Northern blot analysis consistently demonstrated renin mRNA expression in uterine lining both in the pregnant (decidua) and nonpregnant states (endometrium) and in fetal chorion laeve, which is inseparable from the decidua. In contrast, renin mRNA expression was not detected in basal plate and intertwin chorion (which is separate from decidua), amnion, myometrium, or placental villi. The total renin content in decidual homogenates was two- to threefold greater than in endometrial homogenates, and cultured human decidual cells produced significantly more total renin than cultured human endometrial cells, suggesting that pregnancy enhanced renin production by the cells lining the uterus. Immunoblot analysis and [3H]leucine incorporation identified 47,000-mol wt prorenin as the major form of renin produced by cultured human decidual cells. These studies indicate that maternal decidua is the major source of prorenin in the uteroplacental unit.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Huntington disease expansion mutations in humans can occur before meiosis is completed

Song-Ro Yoon; Louis Dubeau; Margot de Young; Nancy S. Wexler; Norman Arnheim

Single-molecule DNA analysis of testicular germ cells isolated by laser capture microdissection from two Huntington disease patients showed that trinucleotide repeat expansion mutations were present before the end of the first meiotic division, and some mutations were present even before meiosis began. Most of the larger Huntington disease mutations were found in the postmeiotic cell population, suggesting that expansions may continue to occur during meiosis and/or after meiosis is complete. Defining the germ-line cell compartments where the trinucleotide repeat expansions occur could help to elucidate the underlying mechanisms of instability.


Cancer Prevention Research | 2008

Long-term Epigenetic Therapy with Oral Zebularine Has Minimal Side Effects and Prevents Intestinal Tumors in Mice

Christine B. Yoo; Jody C. Chuang; Hyang-Min Byun; Gerda Egger; Allen S. Yang; Louis Dubeau; Tiffany I. Long; Peter W. Laird; Victor E. Marquez; Peter A. Jones

Recent successes in the application of epigenetic drugs for the treatment of myelodysplastic syndrome have raised questions on the safety of long-term administration of DNA methylation inhibitors. We treated preweaned cancer prone ApcMin/+ (Min) mice continuously with the DNA methylation inhibitor zebularine in their drinking water to determine the effects of the drug on normal mouse development as well as cancer prevention. Zebularine caused a tissue-specific reduction in DNA methylation at B1 short interspersed nucleotide elements in the small and large intestines of female Min mice but not in other organs examined after chronic oral treatment. No significant difference in the average weights of mice was observed during the treatment. In addition, analysis of global gene expression of colonic epithelial cells from the females indicated that only 3% to 6% of the genes were affected in their expression. We did not detect toxicity and abnormalities from the histopathologic analysis of liver and intestinal tissues. Lastly, we tested whether prevention of tumorigenesis can be achieved with chronic oral administration of zebularine in Min mice. The average number of polyps in Min females decreased from 58 to 1, whereas the average polyp number remained unaffected in Min males possibly due to differential activity of aldehyde oxidase. Taken together, our results show for the first time that long-term oral administration of zebularine causes a gender-specific abrogation of intestinal tumors while causing a tissue-specific DNA demethylation. Importantly, prolonged treatment of mice with epigenetic drugs resulted in only minor developmental and histologic changes.


Human Gene Therapy | 2004

Spontaneous and Controllable Activation of Suicide Gene Expression Driven by the Stress-Inducible Grp78 Promoter Resulting in Eradication of Sizable Human Tumors

Dezheng Dong; Louis Dubeau; James R. Bading; Khoi Nguyen; Marian Luna; Hong Yu; Gadi Gazit-Bornstein; Erlinda M. Gordon; Charles J. Gomer; Frederick L. Hall; Sanjiv S. Gambhir; Amy S. Lee

GRP78 is a stress-inducible chaperone protein with antiapoptotic properties that is overexpressed in transformed cells and cells under glucose starvation, acidosis, and hypoxic conditions that persist in poorly vascularized tumors. Previously we demonstrated that the Grp78 promoter is able to eradicate tumors using murine cells in immunocompetent models by driving expression of the HSV-tk suicide gene. Here, through the use of positron emission tomography (PET) imaging, we provide direct evidence of spontaneous in vivo activation of the HSV-tk suicide gene driven by the Grp78 promoter in growing tumors and its activation by photodynamic therapy (PDT) in a controlled manner. In this report, we evaluated whether this promoter can be applied to human cancer therapy. We observed that the Grp78 promoter, in the context of a retroviral vector, was highly activated by stress and PDT in three different types of human breast carcinomas independent of estrogen receptor and p53. Complete regression of sizable human tumors was observed after prodrug ganciclovir treatment of the xenografts in immunodeficient mice. In addition, the Grp78 promoter-driven suicide gene is strongly expressed in a variety of human tumors, including human osteosarcoma. In contrast, the activity of the murine leukemia virus (MuLV) long-terminal repeat (LTR) promoter varied greatly in different human breast carcinoma cell lines, and in some cases, stress resulted in partial suppression of the LTR promoter activity. In transgenic mouse models, the Grp78 promoter-driven transgene is largely quiescent in major adult organs but highly active in cancer cells and cancer-associated macrophages, which can diffuse to tumor necrotic sites devoid of vascular supply and facilitate cell-based therapy. Thus, transcriptional control through the use of the Grp78 promoter offers multiple novel approaches for human cancer gene therapy.

Collaboration


Dive into the Louis Dubeau's collaboration.

Top Co-Authors

Avatar

Amy S. Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela Velicescu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Minghong Wan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Robert Maxson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hai-Yun Yen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mimi C. Yu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Frank D. Gilliland

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge