Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis François is active.

Publication


Featured researches published by Louis François.


Nature | 2000

Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon

Ján Veizer; Y. Godderis; Louis François

Atmospheric carbon dioxide concentrations are believed to drive climate changes from glacial to interglacial modes, although geological and astronomical mechanisms have been invoked as ultimate causes. Additionally, it is unclear whether the changes between cold and warm modes should be regarded as a global phenomenon, affecting tropical and high-latitude temperatures alike, or if they are better described as an expansion and contraction of the latitudinal climate zones, keeping equatorial temperatures approximately constant. Here we present a reconstruction of tropical sea surface temperatures throughout the Phanerozoic eon (the past ∼550 Myr) from our database of oxygen isotopes in calcite and aragonite shells. The data indicate large oscillations of tropical sea surface temperatures in phase with the cold–warm cycles, thus favouring the idea of climate variability as a global phenomenon. But our data conflict with a temperature reconstruction using an energy balance model that is forced by reconstructed atmospheric carbon dioxide concentrations. The results can be reconciled if atmospheric carbon dioxide concentrations were not the principal driver of climate variability on geological timescales for at least one-third of the Phanerozoic eon, or if the reconstructed carbon dioxide concentrations are not reliable.


Global Change Biology | 2013

A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

Christopher Reyer; Sebastian Leuzinger; Anja Rammig; Annett Wolf; Ruud P Bartholomeus; Antonello Bonfante; Francesca De Lorenzi; Marie Dury; Philipp Gloning; Renée Abou Jaoudé; Tamir Klein; Thomas Kuster; M. V. Martins; Georg Niedrist; M. Riccardi; Georg Wohlfahrt; Paolo De Angelis; Giovanbattista de Dato; Louis François; Annette Menzel; Marízia Menezes Dias Pereira

We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.


Global Biogeochemical Cycles | 1994

CARAIB: A global model of terrestrial biological productivity

Pierre Warnant; Louis François; David Strivay; Jean-Claude Gérard

CARAIB, a mechanistic model of carbon assimilation in the biosphere estimates the net primary productivity (NPP) of the continental vegetation on a grid of 1° × 1° in latitude and longitude. The model considers the annual and diurnal cycles. It is based on the coupling of the three following submodels; a leaf assimilation model including estimates of stomatal conductance and leaf respiration, a canopy model describing principally the radiative transfer through the foliage, and a wood respiration model. Present-day climate and vegetation characteristics allow the discrimination between ecotypes. In particular, specific information on vegetation distribution and properties is successfully used at four levels; the leaf physiological level, the plant level, the ecosystem level, and the global level. The productivity determined by the CARAIB model is compared with local measurements and empirical estimates showing a good agreement with a global value of 65 Gt C yr−1. The sensitivity of the model to the diurnal cycle and to the abundance of C4 species is also tested. The productivity slightly decreases (10%) when the diurnal cycle of the temperature is neglected. By contrast, neglecting the diurnal cycle of solar irradiance produces unrealistically high values of NPP. Even if the importance of this increase would presumably be reduced by the coupling of CARAIB with a nutrient cycle model, this test emphasizes the key role of the diurnal cycle in a mechanistic model of the NPP. Uncertainties on the abundance and spatial distribution of C4 plants may cause errors in the NPP estimates, however, as demonstrated by two sensitivity tests, these errors are certainly lower than 10% at the global scale as shown by two tests.


Earth and Planetary Science Letters | 2003

The Sturtian 'snowball' glaciation: fire and ice

Yves Goddéris; Yannick Donnadieu; Anne Nédélec; Bernard Dupré; C. Dessert; Aline Grard; Gilles Ramstein; Louis François

Abstract The Sturtian ‘snowball’ glaciation (730 Ma) is contemporary with the dislocation of the Rodinia supercontinent. This dislocation is heralded and accompanied by intense magmatic events, including the onset of large basaltic provinces between 825 and 755 Ma. Among these magmatic events, the most important one is the onset of a Laurentian magmatic province at 780 Ma around a latitude of 30°N. The presence of these fresh basaltic provinces increases the weatherability of the continental surfaces, resulting in an enhanced consumption of atmospheric CO 2 through weathering, inducing a global long-term climatic cooling. Based on recent weathering laws for basaltic lithology and on climatic model results, we show that the weathering of a 6×10 6 km 2 basaltic province located within the equatorial region (where weathering of the province and consumption of CO 2 are boosted by optimal climatic conditions) is sufficient to trigger a snowball glaciation, assuming a pre-perturbation PCO 2 value of 280 ppmv. We show that the Laurentian magmatic province might be the main culprit for the initiation of the Sturtian ‘snowball’ glaciation, since the Laurentian magmatic province had drifted within the equatorial region by the time of the glaciation.


Chemical Geology | 1995

The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges

Y. Godderis; Louis François

The past variations of the seawater 87Sr86Sr isotopic ratio are related to changes in the relative contribution of the mantle Sr input to the ocean and the Sr supply from continental weathering. Recently, it has been postulated that the Cenozoic increase in the seawater 87Sr86Sr isotopic ratio was associated with the uplift of the Himalayan and Andean mountains at that time. These orogenies may have changed the Sr isotopic ratio of the continental rocks undergoing weathering (as a result of extensive metamorphism), increased the river flux of Sr through enhanced weathering in these regions and possibly caused the global climatic cooling trend of the Cenozoic. A model of the major geochemical cycles coupled to an energy balance climate model is used to explore the possible causes of the Mesozoic-Cenozoic fluctuations in the seawater 87Sr86Sr isotopic ratio. The contribution of the mantle exchanges at mid-ocean ridges, of the recycling of seafloor carbonates through plate margin volcanism and of the alteration of seafloor basalts to the fluctuations of the seawater 87Sr86Sr isotopic ratio are studied. Finally, this model tentatively describes the impact of the Himalayan orogeny on the geochemical cycles of Sr and C. Some possible effects of the extensive metamorphism associated with the India-Asia collision and of the Himalayan uplift are modelled. The model reproduces the Cenozoic increase of the seawater 87Sr86Sr isotopic ratio. However, the impact of the Himalayan orogeny on the C cycle appears to be limited and insufficient to generate the global climatic cooling of the Cenozoic. Rather, in the model, the Cenozoic cooling is mostly due to the reduction of the CO2 emission from mid-ocean ridge volcanism and to changes in the chemical weathering rates in the rest of the world excluding the Himalayas.


Global and Planetary Change | 1998

Modelling the glacial-interglacial changes in the continental biosphere

Louis François; Christine Delire; Pierre Warnant; Guy Munhoven

Abstract A new estimate of the glacial–interglacial variations of the terrestrial carbon storage was obtained with the CARAIB biosphere model. The climatic data for the Last Glacial Maximum (LGM) necessary to drive the biosphere model are derived from results of the ECHAM2 General Circulation Model (GCM). Six model simulations (four under typical interglacial and two under typical glacial climatic conditions) were performed to analyse the roles of different environmental changes influencing the biospheric net primary productivity (NPP) and carbon stocks. The main differences between these simulations come from the adopted CO 2 levels in the atmosphere, the presence or absence of crops and from changing continental boundaries. The variation of the terrestrial carbon stocks since the LGM are estimated by comparing the pre-agricultural (280 ppm of CO 2 , no crops, modern climate) and the full glacial simulations (200 ppm of CO 2 , LGM climate reconstruction). Our model predicts a global NPP increase from 38 Gt C year −1 to 53 Gt C year −1 during the deglaciation, a substantial part of that change being due to CO 2 fertilization. At the same time, the terrestrial biosphere would have fixed between 134 (neglecting CO 2 fertilization effects) and 606 Gt C. The treatment of both the C 3 and C 4 photosynthetic pathways in the CARAIB model enabled us further to reconstruct the partitioning between C 4 and C 3 plants. Following our experiments, 29.7% of the total biospheric carbon stock at the LGM was C 4 material, compared to an interglacial fraction of only 19.8%. The average biospheric fractionation factor was ∼1.5‰ less negative at LGM than it is today. Considering an atmospheric δ 13 C 0.5±0.2‰ lower at LGM than at pre-industrial times, the 606 Gt C transfer would lead to a global ocean δ 13 C shift of roughly −0.41‰, fully consistent with currently available data. For the smaller change of 134 Gt C obtained without the CO 2 fertilization effect, this shift would only be on the order of −0.10‰.


Chemical Geology | 1999

Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times

Louis François; Y. Godderis; Pierre Warnant; Gilles Ramstein; N. de Noblet; S. Lorenz

Abstract The carbon fluxes, stocks and isotopic budgets of the land biosphere at mid-Holocene (6 ka BP) and last glacial maximum (21 ka BP) times are reconstructed with the CARbon Assimilation In the Biosphere (CARAIB) model forced with two different sets of climates simulated by the European Centre-HAMburg (ECHAM) and LMD general circulation models. It is found that the trends predicted on the basis of both sets of GCM climatic fields are generally consistent with each other, although substantial discrepancies in the magnitude of the changes may be observed. Actually, these discrepancies in the biospheric results associated with the use of different GCM climatic fields are usually smaller than the differences between biospheric runs performed while considering or neglecting the CO2 fertilization effect (which might, however, be overestimated by the model due to uncertainties concerning changes in nutrient availability). The calculated changes with respect to the present of the biosphere carbon stock range from −132 to +92 Gt C for the mid-Holocene and from −710 to +70 Gt C for the last glacial maximum. It is also shown that the relative contribution of the material synthesized by C4 plants to the total biomass of vegetation, litter and soils was substantially larger at mid-Holocene and last glacial maximum times than today. This change in the relative importance of the C3 and C4 photosynthetic pathways induced changes in the 13 C fractionation of the land biosphere. These changes in the average biospheric fractionation resulting from the redistribution of C3 and C4 plants were partly compensated for by changes of opposite sign in the fractionation of C3 plants due to the modification of the intercellular CO2 pressure within their leaves. With respect to present times, the combination of both processes reduced the 13 C discrimination (i.e., less negative fractionation) of the land biosphere by 0.03 to 0.32‰ during the mid-Holocene and by 0.30 to 1.86‰ at the last glacial maximum.


New Phytologist | 2012

Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.

Shuli Niu; Yiqi Luo; Shenfeng Fei; Wenping Yuan; David S. Schimel; Beverly E. Law; C. Ammann; M. Altaf Arain; Almut Arneth; Marc Aubinet; Alan G. Barr; Jason Beringer; Christian Bernhofer; T. Andrew Black; Nina Buchmann; Alessandro Cescatti; Jiquan Chen; Kenneth J. Davis; Ebba Dellwik; Ankur R. Desai; Sophia Etzold; Louis François; Damiano Gianelle; Bert Gielen; Allen H. Goldstein; Margriet Groenendijk; Lianhong Gu; Niall P. Hanan; Carole Helfter; Takashi Hirano

• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.


Journal of Geophysical Research | 1996

Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study

Guy Munhoven; Louis François

An 11-box model of the oceanic carbon cycle including sedimentary processes is used to explore the role chemical weathering of continental silicate rocks might play in driving atmospheric CO2 levels on glacial-interglacial timescales. Histories for the consumption of CO2 by silicate rock weathering processes are derived from the marine Ge/Si record. Taking the major uncertainties in the knowledge of the Ge and Si cycles into account, several histories for the evolution of the riverine dissolved silica fluxes are calculated from this record. The investigation of the systematics between riverine dissolved silica and bicarbonate fluxes under different weathering regimes leads us to the tentative conclusion that although there is no correlation between dissolved silica and total bicarbonate concentrations in the major rivers, there may exist a negative correlation between weathering intensity and the ratio of dissolved silica to bicarbonate derived from silicate weathering alone. With this correlation as a working hypothesis, it is possible to interpret the dissolved silica fluxes in terms of equivalent CO2 consumption rates. The calculated histories indicate that glacial rates of CO2 consumption by chemical silicate rock weathering could have been twice, and possibly up to 3.5 times, as high as they are today. When used to force the carbon cycle model, they are responsible for glacial-interglacial pCO2 variations in the atmosphere of typically 50–60 ppm and up to 95–110 ppm. These variations are superimposed to a basic oscillation of 60 ppm generated by the model, mainly in response to coral reef buildup and erosion processes. The total pCO2 signal has an amplitude of about 80–90 ppm and up to 125–135 ppm. Although these large amplitudes indicate that silicate weathering processes should be taken into account when studying glacial-interglacial changes of CO2 in the atmosphere, it also raises new problems, such as too high CO2 levels during the period from 110–70 kyr B.P., requiring further study.


Ecological Modelling | 2001

Modelling short-term CO2 fluxes and long-term tree growth in temperate forests with ASPECTS

Daniel P. Rasse; Louis François; Marc Aubinet; Andrew S Kowalski; Inge Vande Walle; Eric Laitat; Jean-Claude Gérard

The net ecosystem exchange (NEE) of CO2 between temperate forests and the atmosphere governs both carbon removal from the atmosphere and forest growth. In recent years, many experiments have been conducted to determine temperate forest NEE. These data have been used by forest modellers to better understand the processes that govern CO2 fluxes, and estimate the evolution of these fluxes under changing environmental conditions. Nevertheless, it is not clear whether models capable of handling short-term processes, which are mostly source-driven, can provide an accurate estimate of long-term forest growth, which is potentially more influenced by sink- and phenology-related processes. To analyse the interactions between short- and long-term processes, we developed the ASPECTS model, which predicts long-term forest growth by integrating, over time, hourly NEE estimates. Validation data consisting of measurements of NEE by eddy-covariance and forest carbon reservoir estimates were obtained from mixed deciduous and evergreen experimental forests located in Belgium. ASPECTS accurately estimated both: (1) the NEE fluxes for several years of data; and (2) the amount of carbon contained in stems, branches, leaves, fine and coarse roots. Our simulations demonstrated that: (1) NEE measurements in Belgian forests are compatible with forest growth over the course of the 20th century; and (2) that forest history and long-term processes need to be considered for accurate simulation of short-term CO2 fluxes.

Collaboration


Dive into the Louis François's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachid Cheddadi

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge