Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis Gendron is active.

Publication


Featured researches published by Louis Gendron.


The Journal of Neuroscience | 2006

Morphine and Pain-Related Stimuli Enhance Cell Surface Availability of Somatic δ-Opioid Receptors in Rat Dorsal Root Ganglia

Louis Gendron; Anna Lisa Lucido; Françoise Mennicken; Dajan O'Donnell; Jean-Pierre Vincent; Thomas Stroh; Alain Beaudet

The present study demonstrates that perikaryalδ-opioid receptors (δORs) in rat dorsal root ganglion (DRG) neurons bind and internalize opioid ligands circulating in the CSF. Using confocal and electron microscopy, we found that prolonged morphine treatment increased the cell surface density of these perikaryal δORs and, by way of consequence, receptor-mediated internalization of the fluorescent deltorphin (DLT) analog ω-Bodipy 576/589 deltorphin-I 5-aminopentylamide (Fluo-DLT) in all three types of DRG neurons (small, medium, and large). In contrast, chronic inflammatory pain induced by the injection of complete Freunds adjuvant (CFA) into one hindpaw selectively increased Fluo-DLT internalization in small and medium-sized DRG neurons ipsilateral to the inflammation. Based on our previous studies in the spinal cord of μ-opioid receptor (μOR) knock-out mice, it may be assumed that the enhanced membrane recruitment of δORs observed after sustained morphine is attributable to stimulation of μORs. However, the selectivity of the effect induced by inflammatory pain suggests that it involves a different mechanism, namely a modality-specific and pain-related activation of C and Aδ fibers. Indeed, stimulation by capsaicin of transient receptor potential vanilloid 1 receptors, which are selectively expressed by small diameter (< 600 μm2) DRG neurons, increased Fluo-DLT internalization exclusively in this cell population. The present results, therefore, demonstrate that DRG neurons express perikaryal δORs accessible to CSF-circulating ligands and that the density and, hence, presumably also the responsiveness, of these receptors may be modulated by both pain-related stimuli and sustained exposure to μOR agonists.


Neuroendocrinology | 2002

Nitric Oxide and Cyclic GMP Are Involved in Angiotensin II AT 2 Receptor Effects on Neurite Outgrowth in NG108-15 Cells

Louis Gendron; Frédéric Côté; Marcel D. Payet; Nicole Gallo-Payet

In their undifferentiated state, NG108-15 cells express only the angiotensin II (Ang II) type 2 receptor (AT2). We have previously shown that Ang II induced neurite outgrowth of NG108-15 cells, a process involving sustained activation of p42/p44mapk activity. We have also shown that Ang II stimulates nitric oxide (NO) production. The aim of the present study was to investigate the role of the NO/cyclic GMP (cGMP) cascade in the signal transduction of the AT2 receptor-stimulated neurite outgrowth. Three-day treatment of cells with dbcGMP induced neurite outgrowth as did Ang II. Preincubation with an inhibitor of cGMP-dependent protein kinase, KT5823, resulted in the formation of short neurites, while in the presence of LY83583 or methylene blue, two inhibitors of guanylyl cyclase, cells resembled control cells with only one or two thin processes. Western blot analyses indicated that nNOS was present in NG108-15 cells. Immunoprecipitation with antiphosphotyrosine antibodies showed that Ang II induced NOS activity and increased cGMP production through a Gi-dependent pathway. However, neither L-NAME, KT5823, nor LY83583 affected the activation of p42/p44mapk induced by Ang II, indicating that the pathway NO/guanylyl cyclase/cGMP was not involved in Ang II-induced activation of MAPK. The present results suggest that the neurite outgrowth induced by Ang II results from at least parallel but complementary pathways, one involved in neurite elongation (through the cooperation of MAPK and PKG) and the other involved in sprouting (through cGMP).


Behavioural Brain Research | 2012

Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain.

Alexandre J. Parent; Nicolas Beaudet; Hélène Beaudry; Jenny Bergeron; Patrick Bérubé; Guy Drolet; Philippe Sarret; Louis Gendron

For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freunds adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: (1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), (2) a decrease in number of central squares visited in the open field (OF), and (3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance traveled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety.


Journal of Biological Chemistry | 2003

Cyclic AMP-independent Involvement of Rap1/B-Raf in the Angiotensin II AT2 Receptor Signaling Pathway in NG108-15 Cells

Louis Gendron; Jean-François Oligny; Marcel D. Payet; Nicole Gallo-Payet

The angiotensin II (Ang II) type 2 (AT2) receptor is an atypical seven-transmembrane domain receptor. Controversy surrounding this receptor concerns both the nature of the second messengers produced as well as its associated signaling mechanisms. Using the neuronal cell line NG108-15, we have reported previously that activation of the AT2 receptor induced morphological differentiation in a p21 ras -independent, but p42/p44 mapk -dependent mechanism. The activation of p42/p44 mapk was delayed, sustained, and had been shown to be essential for neurite elongation. In the present report, we demonstrate that activation of the AT2 receptor rapidly, but transiently, activated the Rap1/B-Raf complex of signaling proteins. In RapN17- and Rap1GAP-transfected cells, the effects induced by Ang II were abolished, demonstrating that activation of these proteins was responsible for the observed p42/p44 mapk phosphorylation and for morphological differentiation. To assess whether cAMP was involved in the activation of Rap1/B-Raf and neuronal differentiation induced by Ang II, NG108-15 cells were treated with stimulators or inhibitors of the cAMP pathway. We found that dibutyryl cAMP and forskolin did not stimulate Rap1 or p42/p44 mapk activity. Furthermore, adding H-89, an inhibitor of protein kinase A, or Rp-8-Br-cAMP-S, an inactive cAMP analog, failed to impair p42/p44 mapk activity and neurite outgrowth induced by Ang II. The present observations clearly indicate that cAMP, a well known stimulus of neuronal differentiation, did not participate in the AT2 receptor signaling pathways in the NG108-15 cells. Therefore, the AT2 receptor of Ang II activates the signaling modules of Rap1/B-Raf and p42/p44 mapk via a cAMP-independent pathway to induce morphological differentiation of NG108-15 cells.


The Journal of Neuroscience | 2011

Activation of Spinal μ- and δ-Opioid Receptors Potently Inhibits Substance P Release Induced by Peripheral Noxious Stimuli

Hélène Beaudry; Dave Dubois; Louis Gendron

Over the past few years, δ-opioid receptors (DOPRs) and μ-opioid receptors (MOPRs) have been shown to interact with each other. We have previously seen that expression of MOPR is essential for morphine and inflammation to potentiate the analgesic properties of selective DOPR agonists. In vivo, it is not clear whether MOPRs and DOPRs are expressed in the same neurons. Indeed, it was recently proposed that these receptors are segregated in different populations of nociceptors, with MOPRs and DOPRs expressed by peptidergic and nonpeptidergic fibers, respectively. In the present study, the role and the effects of DOPR- and MOPR-selective agonists in two different pain models were compared. Using preprotachykinin A knock-out mice, we first confirmed that substance P partly mediates intraplantar formalin- and capsaicin-induced pain behaviors. These mice had a significant reduction in pain behavior compared with wild-type mice. We then measured the effects of intrathecal deltorphin II (DOPR agonist) and DAMGO (MOPR agonist) on pain-like behavior, neuronal activation, and substance P release following formalin and capsaicin injection. We found that both agonists were able to decrease formalin- and capsaicin-induced pain, an effect that was correlated with a reduction in the number of c-fos-positive neurons in the superficial laminae of the lumbar spinal cord. Finally, visualization of NK1 (neurokinin 1) receptor internalization revealed that DOPR and MOPR activation strongly reduced formalin- and capsaicin-induced substance P release via direct action on primary afferent fibers. Together, our results indicate that functional MOPRs and DOPRs are both expressed by peptidergic nociceptors.


Neuroscience | 2009

Differential noxious and motor tolerance of chronic delta opioid receptor agonists in rodents.

Hélène Beaudry; A. Proteau-Gagné; Shuang Li; Yves L. Dory; Charles Chavkin; Louis Gendron

In the present study, we asked whether multiple intrathecal injections of deltorphin II, a selective delta opioid receptor (DOPR) agonist, induced DOPR tolerance in three behavioral assays. Unilateral inflammation caused by complete Freunds adjuvant (CFA) injection into the rat or mouse hind paw (CFA model) induced thermal hyperalgesic response that was transiently and dose-dependently reduced by intrathecal administration of deltorphin II or morphine. In both rodent species, the effect of deltorphin II was not modified by a single prior administration of deltorphin II, suggesting an absence of acute tolerance in this paradigm. Repeated administration of intrathecal deltorphin II or s.c. SB-235863 (five consecutive injections over 60 h) also failed to impair the antihyperalgesic response to delta opioid receptor agonist, whereas repeated intrathecal or s.c. injections of morphine induced a significant decrease in the subsequent thermal antihyperalgesic response to morphine. In mice, deltorphin II also induced a rapid, transient motor incoordination/ataxia-like behavior as tested with the accelerating rotarod. In contrast to the antihyperalgesic responses, tolerance to the motoric effect of deltorphin II was evident in mice previously exposed to multiple intrathecal agonist injections, but not multiple saline administrations. Using the tail flick antinociceptive test, we found that DOPR-mediated analgesia was significantly reduced by repeated exposure to deltorphin II. Altogether, these observations suggest that repeated injections of DOPR agonists induce differential tolerance effects on antihyperalgesic, antinociceptive, and motor incoordination/ataxia-like behaviors related to DOPR activation by deltorphin II.


British Journal of Pharmacology | 2015

Recent advances on the δ opioid receptor: from trafficking to function

Louis Gendron; Nitish Mittal; Hélène Beaudry; Wendy Walwyn

Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second‐messenger signalling cascades to influence diverse cellular functions in neuronal and non‐neuronal cell types. These receptors activate well‐known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor‐interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia.


PLOS ONE | 2010

Behavioral, Medical Imaging and Histopathological Features of a New Rat Model of Bone Cancer Pain

Louis Doré-Savard; Valérie Otis; Karine Belleville; Myriam Lemire; Mélanie Archambault; Luc Tremblay; Jean-François Beaudoin; Nicolas Beaudet; Roger Lecomte; Martin Lepage; Louis Gendron; Philippe Sarret

Pre-clinical bone cancer pain models mimicking the human condition are required to respond to clinical realities. Breast or prostate cancer patients coping with bone metastases experience intractable pain, which affects their quality of life. Advanced monitoring is thus required to clarify bone cancer pain mechanisms and refine treatments. In our model of rat femoral mammary carcinoma MRMT-1 cell implantation, pain onset and tumor growth were monitored for 21 days. The surgical procedure performed without arthrotomy allowed recording of incidental pain in free-moving rats. Along with the gradual development of mechanical allodynia and hyperalgesia, behavioral signs of ambulatory pain were detected at day 14 by using a dynamic weight-bearing apparatus. Osteopenia was revealed from day 14 concomitantly with disorganization of the trabecular architecture (µCT). Bone metastases were visualized as early as day 8 by MRI (T1-Gd-DTPA) before pain detection. PET (Na18F) co-registration revealed intra-osseous activity, as determined by anatomical superimposition over MRI in accordance with osteoclastic hyperactivity (TRAP staining). Pain and bone destruction were aggravated with time. Bone remodeling was accompanied by c-Fos (spinal) and ATF3 (DRG) neuronal activation, sustained by astrocyte (GFAP) and microglia (Iba1) reactivity in lumbar spinal cord. Our animal model demonstrates the importance of simultaneously recording pain and tumor progression and will allow us to better characterize therapeutic strategies in the future.


Neuroscience | 2011

Spinal activation of delta opioid receptors alleviates cancer-related bone pain.

Valérie Otis; Philippe Sarret; Louis Gendron

Over the past few years, significant progress has been made in cancer therapy. Indeed, the lifespan of cancer patients has significantly increased. Although patients live longer, cancer-related pain remains a daily problem affecting their quality of life, especially when metastases reach the bone. In patients coping with cancer-induced bone pain, morphine and NSAIDs, often used in combination with other medications, are the most commonly used drugs to alleviate pain. However, these drugs have dose-limiting side effects. Morphine and other routinely used opioids are mu opioid receptor (MOPR) agonists. The MOPR is responsible for most opioid-related adverse effects. In the present study, we revealed potent analgesic effects of an intrathecally-administered selective delta opioid receptor (DOPR) agonist, deltorphin II, in a recently developed rat bone cancer model. Indeed, we found that deltorphin II dose-dependently reversed mechanical allodynia 14 days post-surgery in this cancer pain model, which is based on the implantation of mammary MRMT-1 cells in the femur. This effect was DOPR-mediated as it was completely blocked by naltrindole, a selective DOPR antagonist. Using the complete Freunds adjuvant model of inflammatory pain, we further demonstrated that deltorphin II was equipotent at alleviating inflammatory and cancer pain (i.e. similar ED50 values). Altogether, the present results show, for the first time, that activation of spinal DOPRs causes significant analgesia at doses sufficient to reduce inflammatory pain in a rat bone cancer pain model. Our results further suggest that DOPR represents a potential target for the development of novel analgesic therapies to be used in the treatment of cancer-related pain.


Neuroscience | 2014

Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia

Julie Desroches; Jean-François Bouchard; Louis Gendron; Pierre Beaulieu

The interactions between the cannabinoid and opioid systems for pain modulation are reciprocal. However, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. We studied these interactions with the goal of highlighting the involvement of the cannabinoid system in morphine-induced analgesia. In both phases of the formalin test, intra paw and intrathecal morphine produced similar antinociceptive effects in C57BL/6, cannabinoid type 1 and type 2 receptor wild-type (respectively cnr1WT and cnr2WT) mice. In cnr1 and cnr2 knockout (KO) mice, at the dose used the antinociceptive effect of intra paw morphine in the inflammatory phase of the formalin test was decreased by 87% and 76%, respectively. Similarly, the antinociceptive effect of 0.1μg spinal morphine in the inflammatory phase was abolished in cnr1KO mice and decreased by 90% in cnr2KO mice. Interestingly, the antinociceptive effect of morphine in the acute phase of the formalin test was only reduced in cnr1KO mice. Notably, systemic morphine administration produced similar analgesia in all genotypes, in both the formalin and the hot water immersion tail-flick tests. Because the pattern of expression of the mu opioid receptor (MOP), its binding properties and its G protein coupling remained unchanged across genotypes, it is unlikely that the loss of morphine analgesia in the cnr1KO and cnr2KO mice is the consequence of MOP malfunction or downregulation due to the absence of its heterodimerization with either the CB1 or the CB2 receptors, at least at the level of the spinal cord.

Collaboration


Dive into the Louis Gendron's collaboration.

Top Co-Authors

Avatar

Philippe Sarret

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Yves L. Dory

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel D. Payet

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge