Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis J. Romano is active.

Publication


Featured researches published by Louis J. Romano.


Journal of Biological Chemistry | 1999

Cytosine Methylation in a CpG Sequence Leads to Enhanced Reactivity with Benzo[a]pyrene Diol Epoxide That Correlates with a Conformational Change

Daniel J. Weisenberger; Louis J. Romano

Benzo[a]pyrene (B[a]P) is a widespread environmental carcinogen that must be activated by cellular metabolism to a diol epoxide form (BPDE) before it reacts with DNA. It has recently been shown that BPDE preferentially modifies the guanine in methylated 5′-CpG-3′ sequences in the human p53 gene, providing one explanation for why these sites are mutational hot spots. Using purified duplex oligonucleotides containing identical methylated and unmethylated CpG sequences, we show here that BPDE preferentially modified the guanine in hemimethylated or fully methylated CpG sequences, producing between 3- and 8-fold more modification at this site. Analysis of this reaction using shorter duplex oligonucleotides indicated that it was the level of the (+)-trans isomer that was specifically increased. To determine if there were conformational differences between the methylated and unmethylated B[a]P-modified DNA sequences that may be responsible for this enhanced reactivity, a native polyacrylamide gel electrophoresis analysis was carried out using DNA containing isomerically pure B[a]P-DNA adducts. These experiments showed that each adduct resulted in an altered gel mobility in duplex DNA but that only the presence of a (+)-transisomer and a methylated C 5′ to the adduct resulted in a significant gel mobility shift compared with the unmethylated case.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution

Thomas D. Christian; Louis J. Romano; David Rueda

The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3′-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.


Mutation Research | 1984

Dissociation of malondialdehyde mutagenicity in Salmonella typhimurium from its ability to induce interstrand DNA cross-links ☆

Ashis K. Basu; Lawrence J. Marnett; Louis J. Romano

Malondialdehyde (MDA), an in vivo metabolite of lipid peroxidation and prostaglandin biosynthesis, is mutagenic in Salmonella typhimurium. It is a reactive electrophile that can form interstrand cross-links in DNA. To explore the possibility that MDA-induced interstrand cross-links are the pre-mutagenic lesion, we have quantitated the ability of highly purified preparations of MDA to form interstrand cross-links when reacted with linear plasmid DNA. At physiological temperature and pH, MDA did not form DNA cross-links as determined by DNA denaturation followed by agarose gel electrophoresis. DNA cross-links were formed, however, when incubations with MDA were carried out at either pH 4.2 or temperatures exceeding 60 degrees. alpha-Methylmalondialdehyde (CH3MDA) was found to cross-link DNA more efficiently than MDA, but was not mutagenic in any tester strain of Salmonella. MDA polymers, formed by acid incubation of MDA, also were capable of inducing cross-links. However, an inverse relationship was observed between mutagenicity and extent of polymerization. The pattern of mutagenic response for MDA in different strains of Salmonella was compared with mitomycin C, an established mutagenic cross-linking agent. Error-prone repair and a UvrB+ phenotype, which are needed for the induction of mutations by mitomycin C, were not required for MDA mutagenesis. These findings, taken together, dissociate the mutagenicity of MDA from its ability to form interstrand cross-links with DNA.


Nucleic Acids Research | 2012

Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I

Radoslaw P. Markiewicz; Kyle B. Vrtis; David Rueda; Louis J. Romano

The mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs. These results are consistent with a model where nucleotide selection occurs in the open complex prior to the formation of a closed ternary complex. Our assay can also distinguish between primer binding to the polymerase or exonuclease domain and, contrary to ensemble-averaged studies, we find that stable exonuclease binding only occurs with a mismatched primer terminus.


Journal of Biological Chemistry | 1995

NUCLEOTIDE AND DNA-INDUCED CONFORMATIONAL CHANGES IN THE BACTERIOPHAGE T7 GENE 4 PROTEIN

Yongqi Yong; Louis J. Romano

The bacteriophage T7 gene 4 protein is a multifunctional enzyme that has DNA helicase, primase, and deoxyribonucleotide 5′-triphosphatase activities. Prior studies have shown that in the presence of dTTP or dTDP the gene 4 protein assembles into a functionally active hexamer prior to binding to single-stranded DNA. In this study, we have examined the effects of different nucleotide cofactors on the conformation of the gene 4 protein in the presence and absence of DNA. Gel retardation analysis, partial protease digestion, and DNA footprinting all suggest that the gene 4 protein undergoes a conformational change when dTTP is hydrolyzed to dTTP and that in the presence of dTDP the complex with DNA is more open or extended. We have also found that the dissociation constant of the gene 4 protein•DNA complex in the presence of dTDP was 10-fold lower than that determined in the presence of dTTP, further suggesting that these cofactors exerts different allosteric effects on the DNA-binding site of the gene 4 protein.


Journal of Biological Chemistry | 1999

Interaction of Escherichia coli DNA polymerase I (Klenow fragment) with primer-templates containing N-acetyl-2-aminofluorene or N-2-aminofluorene adducts in the active site

Leonid Dzantiev; Louis J. Romano

DNA adducts formed by aromatic amines such asN-acetyl-2-aminofluorene (AAF) andN-2-aminofluorene (AF) are known to cause mutations by interfering with the process of DNA replication. To understand this phenomenon better, a gel retardation assay was used to measure the equilibrium dissociation constants for the binding of an exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment) to DNA primer-templates modified with an AAF or AF adduct. The results indicate that the nature of the adduct as well as the presence and nature of an added dNTP have a significant influence on the strength of the binding of the polymerase to the DNA. More specifically, it was found that the binding is 5–10-fold stronger when an AAF adduct, but not an AF adduct, is positioned in the enzyme active site. In addition, the polymerase was found to bind the unmodified primer-template less strongly in the presence of a noncomplementary dNTP than in the presence of the correct nucleotide. The same trend holds true for the primer-template having an AF adduct, although the magnitude of this difference was lower. In the case of the AAF adduct, the interaction of the polymerase with the primer-template was stronger and almost independent of the nucleotide present.


Nucleic Acids Research | 2014

Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment

Alfonso Brenlla; Radoslaw P. Markiewicz; David Rueda; Louis J. Romano

Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.


Biochemistry | 2009

Effect of N-2-Acetylaminofluorene and 2-Aminofluorene Adducts on DNA Binding and Synthesis by Yeast DNA Polymerase η †

Venkataramana Vooradi; Louis J. Romano

The well-studied aromatic amine carcinogen, N-2-acetylaminofluorene (AAF), forms adducts at the C8 position of guanine in DNA. Unlike replicative polymerases, Y-family polymerases have been shown to have the ability to bypass such bulky DNA lesions. To better understand the mechanism of translesion synthesis by the yeast DNA polymerase eta (yPoleta), a gel retardation technique was used to measure equilibrium dissociation constants of this polymerase for unmodified DNA or DNA containing dG-C8-AAF or the related deacylated dG-C8-AF adduct. These results show that the binding of yPoleta to the unmodified primer-template is substantially stronger in the presence of the next correct nucleotide than when no or an incorrect nucleotide is present. In addition, binding of yPoleta to either dG-C8-AAF or AF-modified templates is also stronger in the presence of dCTP. Finally, the yPoleta complex is destabilized if the primer extends to a position across from the adduct, and stronger binding is not observed in the presence of the next correct nucleotide. Taken together, these data are consistent with the ability of yPoleta to undergo a conformational change to a closed ternary complex in the presence of the next correct nucleotide and on templates containing an AAF or AF adduct but do not rule out other possible explanations.


Nucleic Acids Research | 2013

Carcinogenic adducts induce distinct DNA polymerase binding orientations

Kyle B. Vrtis; Radoslaw P. Markiewicz; Louis J. Romano; David Rueda

DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the adducts influence the polymerase dwell time on the DNA but also its binding position and orientation. Finally, we have directly observed an adduct- and mismatch-induced intermediate state, which may be an obligatory step in the DNA polymerase proofreading mechanism.


Journal of Nucleic Acids | 2010

DNA Polymerase: Structural Homology, Conformational Dynamics, and the Effects of Carcinogenic DNA Adducts

Richard G. Federley; Louis J. Romano

DNA replication is vital for an organism to proliferate and lying at the heart of this process is the enzyme DNA polymerase. Most DNA polymerases have a similar three dimensional fold, akin to a human right hand, despite differences in sequence homology. This structural homology would predict a relatively unvarying mechanism for DNA synthesis yet various polymerases exhibit markedly different properties on similar substrates, indicative of each type of polymerase being prescribed to a specific role in DNA replication. Several key conformational steps, discrete states, and structural moieties have been identified that contribute to the array of properties the polymerases exhibit. The ability of carcinogenic adducts to interfere with conformational processes by directly interacting with the protein explicates the mutagenic consequences these adducts impose. Recent studies have identified novel states that have been hypothesised to test the fit of the nascent base pair, and have also shown the enzyme to possess a lively quality by continually sampling various conformations. This review focuses on the homologous structural changes that take place in various DNA polymerases, both replicative and those involved in adduct bypass, the role these changes play in selection of a correct substrate, and how the presence of bulky carcinogenic adducts affects these changes.

Collaboration


Dive into the Louis J. Romano's collaboration.

Top Co-Authors

Avatar

David Rueda

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge