Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis-Marie Houdebine is active.

Publication


Featured researches published by Louis-Marie Houdebine.


Journal of Biotechnology | 1994

Production of pharmaceutical proteins from transgenic animals

Louis-Marie Houdebine

Different systems are being studied and used to prepare recombinant proteins for pharmaceutical use. The blood, and still more the milk, from transgenic animals appear a very attractive source of pharmaceuticals. The cells from these animals are expected to produce well-matured proteins in potentially huge amounts. Several problems remain before this process becomes used in a large scale. Gene transfer remains a difficult and costly task for farm animals. The vectors carrying the genes coding for the proteins of interest are of unpredictable efficiency. Improvement of these vectors includes the choice of efficient promoters, introns and transcription terminators, the addition of matrix attached regions (MAR) and specialized chromatin sequences (SCS) to enhance the expression of the transgenes and to insulate them from the chromatin environment. Mice are routinely used to evaluate the gene constructs to be transferred into larger animals. Mice can also be utilized to prepare amounts as high as a few hundred mg of recombinant proteins from their milk. Rabbit appears adequate for amounts not higher than 1 kg per year. For larger quantities, goat, sheep, pig and cow are required. No recombinant proteins extracted from the blood or milk of transgenic animals are yet on the market. The relatively slow but real progress to improving the efficiency of this process inclines to be reasonably optimistic. Predictive reports suggest that 10% of the recombinant proteins, corresponding to a 100 million dollars annual market, will be prepared from the milk of transgenic animals by the end of the century.


Comparative Immunology Microbiology and Infectious Diseases | 2009

Production of pharmaceutical proteins by transgenic animals

Louis-Marie Houdebine

Abstract Proteins started being used as pharmaceuticals in the 1920s with insulin extracted from pig pancreas. In the early 1980s, human insulin was prepared in recombinant bacteria and it is now used by all patients suffering from diabetes. Several other proteins and particularly human growth hormone are also prepared from bacteria. This success was limited by the fact that bacteria cannot synthesize complex proteins such as monoclonal antibodies or coagulation blood factors which must be matured by post-translational modifications to be active or stable in vivo. These modifications include mainly folding, cleavage, subunit association, γ-carboxylation and glycosylation. They can be fully achieved only in mammalian cells which can be cultured in fermentors at an industrial scale or used in living animals. Several transgenic animal species can produce recombinant proteins but presently two systems started being implemented. The first is milk from farm transgenic mammals which has been studied for 20 years and which allowed a protein, human antithrombin III, to receive the agreement from EMEA (European Agency for the Evaluation of Medicinal Products) to be put on the market in 2006. The second system is chicken egg white which recently became more attractive after essential improvement of the methods used to generate transgenic birds. Two monoclonal antibodies and human interferon-β1a could be recovered from chicken egg white. A broad variety of recombinant proteins were produced experimentally by these systems and a few others. This includes monoclonal antibodies, vaccines, blood factors, hormones, growth factors, cytokines, enzymes, milk proteins, collagen, fibrinogen and others. Although these tools have not yet been optimized and are still being improved, a new era in the production of recombinant pharmaceutical proteins was initiated in 1987 and became a reality in 2006. In the present review, the efficiency of the different animal systems to produce pharmaceutical proteins are described and compared to others including plants and micro-organisms.


Journal of Biotechnology | 2002

The methods to generate transgenic animals and to control transgene expression

Louis-Marie Houdebine

Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.


Aquaculture | 1986

High efficiency gene transfer in rainbow trout (Salmo gairdneri Rich.) by microinjection into egg cytoplasm

Daniel Chourrout; René Guyomard; Louis-Marie Houdebine

Abstract A plasmid containing human growth hormone cDNA sequence was injected into cytoplasm of fertilized rainbow trout ( Salmo gairdneri Rich.) eggs before first cleavage. Survival rates at hatching (stage of analysis) were high (average: 77%; range: 50–100%). Foreign DNA was detected in pooled and individual embryos either by dot blot or by southern electrophoresis procedures using the labelled plasmid as probe; it comigrated with the high molecular weight DNA and was therefore most likely integrated in the trout genome. Transformation yields were higher with linearized than with circular plasmid (75% versus 40%). These data suggest that transgenic trout can be routinely obtained in large proportions.


Current Opinion in Biotechnology | 2002

Antibody manufacture in transgenic animals and comparisons with other systems

Louis-Marie Houdebine

Abstract Various forms of recombinant monoclonal antibodies are being used increasingly, mainly for therapeutic purposes. The isolation and engineering of the corresponding genes is becoming less of a bottleneck in the process; however, the production of recombinant antibodies is itself a limiting factor and a shortage is expected in the coming years. Milk from transgenic animals appears to be one of the most attractive sources of recombinant antibodies. None of the production systems presently implemented (CHO cells, insect cells infected by baculovirus, or transgenic animals and plants) has yet been optimized. This review describes the advantages of using milk for antibody production in comparison with the other systems.


Transgenic Research | 1999

Association of the 5′ HS4 sequence of the chicken β‐globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits

Frédérique Taboit‐Dameron; Benoit Malassagne; Celine Viglietta; Claudine Puissant; Mathieu Leroux-Coyau; Christiane Chéreau; Joe Attal; Bernard Weill; Louis-Marie Houdebine

Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5′HS4 region from the LCR of the chicken β‐globin locus and the promoter and the first intron from the human EF1α gene, was used to co‐express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5′HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5′HS4 region. In the absence of the 5′HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi‐transgenic line were very efficiently protected in vitro against human complement‐dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5′HS4 region from the LCR of the chicken β‐globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types.


Journal of Biological Chemistry | 1995

Activation of STAT factors by prolactin, interferon-gamma, growth hormones, and a tyrosine phosphatase inhibitor in rabbit primary mammary epithelial cells.

Tourkine N; Schindler C; Larose M; Louis-Marie Houdebine

In numerous studies on mammary epithelial cell lines multiple factors, added to the medium or contained in the serum, were required for casein gene expression. It has been shown in these systems that the mammary gland factor (MGF) is implicated in the activation of the β-casein gene promoter. In the present study, we determined the relationship between known agents that affect casein gene expression and MGF activity using the properties of rabbit primary mammary epithelial cells to respond to PRL alone, when cultured in chemically defined medium. We demonstrate that MGF is rapidly activated by PRL alone or by human growth hormone, a natural ligand of many PRL receptors (PRL-Rs), in the cytoplasm and accumulated in the nucleus. The MGF activation by PRL occurred in the absence of endogenous extracellular matrix, a condition where casein synthesis is known to be markedly reduced. Different inhibitors of protein-tyrosine kinases, which have been shown to reduce casein mRNA synthesis, but not of protein kinase C, decrease the MGF activity. A tyrosine phosphatase inhibitor, sodium pervanadate, induced two GAS-binding complexes related to MGF and STAT1. Our data show that MGF is a latent cytoplasmic factor rapidly activated in mammary epithelial cells, by a mechanism involving a tyrosine kinase and a tyrosine phosphatase.


Journal of Biotechnology | 1995

The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice

Denis Petitclerc; Joé Altai; Marie Claire Théron; Monique Béarzotti; Philippe Bolifraud; Guy Kann; Marie-Georges Stinnakre; Hervé Pointu; Claudine Puissant; Louis-Marie Houdebine

Various combinations of promoters, introns and transcription terminators were used to drive the expression of bovine growth hormone (bGH) cDNA in different cell types. In constructs containing the human cytomegalovirus (hCMV) promoter and the SV40 late genes terminator, the intron from SV40 genes (VP1) was much more efficient, than the intron from the early genes (t). The synthetic intron SIS generated by the association of an adenovirus splice donor and an immunoglobulin G splice acceptor showed the highest activity. The respective potency of these introns was similar in several mammalian (CHO, HC11 and COS) and fish (TO2 and EPC) cells. The rabbit whey acidic protein (WAP) gene promoter was highly efficient to drive the expression of bGH gene in the HC11 mammary cell lines. In contrast, the bGH cDNA under the control of the same promoter was much less efficiently expressed when the SV40 VP1 intron and transcription terminator were used. The rabbit WAP gene and the human GH gene terminators did not or only moderately enhanced the expression of the construct WAP bGH cDNA. Introduction of a promoter sequence from the mouse mammary tumor virus (MMTV) LTR in the VP1 intron increased very significantly the expression of the WAP bGH cDNA. Although several of these vectors showed high potency when expressed stably in HC11 cells, all of them were only moderately efficient in transgenic mice. These data indicate that the VP1 and the SIS introns may be used to express foreign cDNAs with good efficiency in different cell types. The addition of an enhancer within an intron may still reinforce its efficiency. However, transfection experiments, even when stable expression is carried out, are poorly predictive of the potential efficiency of a vector in transgenic animals.


Transgenic Research | 1994

High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland

Eve Devinoy; Dominique Thepot; Marie-Georges Stinnakre; Marie-Louise Fontaine; Henri Grabowski; Claudine Puissant; Andrea Pavirani; Louis-Marie Houdebine

The 5′ flanking region (6.3 kb) of the rabbit WAP (rWAP) gene possesses important regulatory elements. This region was linked to the human growth hormone (hGH) structural gene in order to target transgene expression to the mammary gland. Thirteen lines of transgenic mice were produced. Milk could be collected from six lines of transgenic mice. In five of them, hGH was present in the milk at high concentrations ranging from 4 to 22 mg ml−1. hGH produced by the mammary gland comigrated with hGH of human origin. It was biologically active, and through its prolactin-like activity induced lactogenesis when introduced into mammary culture media. Two of these mouse lines were studied further. hGH mRNA was only detected in the mammary gland during lactation. In the seven other transgenic lines, hGH was present in the blood of cyclic females. The prolactin-like effect of hGH in these mice probably induced female sterility, and milk could, therefore not be obtained. In two lines studied in more detail, the mammary gland was the main organ producing hGH, even in cyclic mice. Low ectopic expression was detected in other organs which varied from one line to the other. This was probably due to the influence on the transgene of the site of integration into the mouse genome. In the 13 lines studied, high mammary-specific hGH expression was not correlated to the transgene copy number. The rWAP-hGH construct thus did not behave as an independent unit of transcription. However, it can be concluded that the 6.3 kb flanking region of the rWAP gene contains regulatory elements responsible for the strong mammary-specific expression of hGH transgene, and that it is a good candidate to control high levels of foreign protein gene expression in the mammary gland of lactating transgenic animals.


Biochimica et Biophysica Acta | 1978

Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture. Quantification of casein mRNA

Eve Devinoy; Louis-Marie Houdebine; Claude Delouis

Milk synthesis is initiated solely by prolactin in the pseudopregnant rabbit and glucocorticoids potentiate this action of prolactin. In organ culture, prolactin, in the presence or in the absence of insulin, enhances casein synthesis and cortisol (inactive alone) amplifies this action. Measurements of casein mRNA concentration in total cellular RNA, by hybridization with DNA complementary to casein mRNA, revealed that the stimulation of casein synthesis by the glucocorticoid is accompanied by an increase in the amount of casein mRNA. A systematic comparison of variations of these two parameters indicated that the major effect of glucocorticoids on lactogenesis in the rabbit at this stage of mammary gland development is mediated through an increase in the quantity of casein mRNA available for translation. No simultaneous control of casein mRNA translation by cortisol was observed.

Collaboration


Dive into the Louis-Marie Houdebine's collaboration.

Top Co-Authors

Avatar

Eve Devinoy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean Djiane

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Celine Viglietta

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Geneviève Jolivet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Thepot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joe Attal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claudine Puissant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bertrand Teyssot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claude Delouis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge