Louis-P. Vézina
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louis-P. Vézina.
Plant Biotechnology Journal | 2010
Marc-André D’Aoust; Manon Couture; Nathalie Charland; Sonia Trépanier; Nathalie Landry; Frédéric Ors; Louis-P. Vézina
During the last decade, the spectre of an influenza pandemic of avian origin has led to a revision of national and global pandemic preparedness plans and has stressed the need for more efficient influenza vaccines and manufacturing practices. The 2009 A/H1N1 (swine flu) outbreak has further emphasized the necessity to develop new solutions for pandemic influenza vaccines. Influenza virus-like particles (VLPs)-non-infectious particles resembling the influenza virus-represent a promising alternative to inactivated and split-influenza virions as antigens, and they have shown uniqueness by inducing a potent immune response through both humoral and cellular components of the immune system. Our group has developed a plant-based transient influenza VLP manufacturing platform capable of producing influenza VLPs with unprecedented speed. Influenza VLP expression and purification technologies were brought to large-scale production of GMP-grade material, and pre-clinical studies have demonstrated that low doses of purified, plant-produced influenza VLPs induce a strong and broad immune response in mice and ferrets. This review positions the recent developments towards the successful production of influenza VLPs in plants, including the production of VLPs from other human viruses and other forms of influenza antigens. The platform developed for large-scale production of VLPs is also presented along with an assessment of the speed of the platform to produce the first experimental vaccine lots from the identification of a new influenza strain.
Plant Biotechnology Journal | 2008
Marc-André D’Aoust; Pierre-Olivier Lavoie; Manon Couture; Sonia Trépanier; Jean-Martin Guay; Michèle Dargis; Sébastien Mongrand; Nathalie Landry; Brian J. Ward; Louis-P. Vézina
A strain-specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the worlds population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant-based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high-molecular-weight structures. H5-containing structures were purified and examination by transmission electron microscopy confirmed virus-like particle (VLP) assembly. High-performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP-producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 microg of purified influenza H5-VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 microg of H5-VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.
PLOS ONE | 2010
Nathalie Landry; Brian J. Ward; Sonia Trépanier; Emanuele Montomoli; Michèle Dargis; Giulia Lapini; Louis-P. Vézina
The recent swine H1N1 influenza outbreak demonstrated that egg-based vaccine manufacturing has an Achilles heel: its inability to provide a large number of doses quickly. Using a novel manufacturing platform based on transient expression of influenza surface glycoproteins in Nicotiana benthamiana, we have recently demonstrated that a candidate Virus-Like Particle (VLP) vaccine can be generated within 3 weeks of release of sequence information. Herein we report that alum-adjuvanted plant-made VLPs containing the hemagglutinin (HA) protein of H5N1 influenza (A/Indonesia/5/05) can induce cross-reactive antibodies in ferrets. Even low doses of this vaccine prevented pathology and reduced viral loads following heterotypic lethal challenge. We further report on safety and immunogenicity from a Phase I clinical study of the plant-made H5 VLP vaccine in healthy adults 18–60 years of age who received 2 doses 21 days apart of 5, 10 or 20 µg of alum-adjuvanted H5 VLP vaccine or placebo (alum). The vaccine was well tolerated at all doses. Adverse events (AE) were mild-to-moderate and self-limited. Pain at the injection site was the most frequent AE, reported in 70% of vaccinated subjects versus 50% of the placebo recipients. No allergic reactions were reported and the plant-made vaccine did not significantly increase the level of naturally occurring serum antibodies to plant-specific sugar moieties. The immunogenicity of the H5 VLP vaccine was evaluated by Hemagglutination-Inhibition (HI), Single Radial Hemolysis (SRH) and MicroNeutralisation (MN). Results from these three assays were highly correlated and showed similar trends across doses. There was a clear dose-response in all measures of immunogenicity and almost 96% of those in the higher dose groups (2×10 or 20 µg) mounted detectable MN responses. Evidence of striking cross-protection in ferrets combined with a good safety profile and promising immunogenicity in humans suggest that plant-based VLP vaccines should be further evaluated for use in pre-pandemic or pandemic situations. Trial Registration ClinicalTrials.gov NCT00984945
Biotechnology and Bioengineering | 1999
Habib Khoudi; Serge Laberge; Jean-Marc Ferullo; Renée Bazin; André Darveau; Yves Castonguay; Guy Allard; Réal Lemieux; Louis-P. Vézina
The increasing use of monoclonal antibodies (mAbs) in diagnostic reagents necessitates efficient and cost-effective mAb production methods. In blood banks, one of the most routinely used reagents is the anti-human IgG reagent used for the detection of non-agglutinating antibodies. Here we report the production of a functional, purified anti-human IgG, through the expression of its encoding genes in perennial transgenic alfalfa. Transgenic plants expressing the light- and heavy-chain encoding mRNAs were obtained, and plants from crosses were found to express fully assembled C5-1. The purification procedure yielded mainly the H2L2 form with specificity and affinity identical to those of hybridoma-derived C5-1. The ability to accumulate the antibody was maintained both in parental F1 lines during repeated harvesting and in clonal material; the antibody was stable in the drying hay as in extracts made in pure water. Also, plant and hybridoma-derived C5-1 had similar in vivo half-lives in mice. These results indicate that plant C5-1 could be used in a diagnostic reagent as effectively as hybridoma-derived C5-1, and demonstrates the usefulness of perennial systems for the cost-effective, stable, and reliable production of large amounts of mAbs.
Plant Biotechnology Journal | 2009
Louis-P. Vézina; Loïc Faye; Patrice Lerouge; Marc-André D’Aoust; Estelle Marquet-Blouin; Carole Burel; Pierre-Olivier Lavoie; Muriel Bardor; Véronique Gomord
Plant-based transient expression is potentially the most rapid and cost-efficient system for the production of recombinant pharmaceutical proteins, but safety concerns associated with plant-specific N-glycosylation have hampered its adoption as a commercial production system. In this article, we describe an approach based on the simultaneous transient co-expression of an antibody, a suppressor of silencing and a chimaeric human beta1,4-galactosyltransferase targeted for optimal activity to the early secretory pathway in agroinfiltrated Nicotiana benthamiana leaves. This strategy allows fast and high-yield production of antibodies with human-like N-glycans and, more generally, provides solutions to many critical problems posed by the large-scale production of therapeutic and vaccinal proteins, specifically yield, volume and quality.
Plant Cell Tissue and Organ Culture | 1995
Réjean Desgagnés; Serge Laberge; Guy Allard; Habib Khoudi; Yves Castonguay; Jacques Lapointe; Réal Michaud; Louis-P. Vézina
Bio-engineering technologies are now routinely used for the genetic improvement of many agricultural crops. However, breeding lines of Medicago sativa are not easily amenable to genetic transformation and therefore cannot benefit from the molecular tools that have been developed for genetic manipulations. This paper describes a strategy that has been developed to transfer DNA into commercially important breeding lines of winter-hardy alfalfa via Agrobacterium infection. Three highly regenerative genotypes have been selected from ca 1000 genotypes within 11 breeding lines. They have been used as basic material for an extensive genetic transformation trial. Combinations of genotypes (11.9, 8.8, 1.5) expression vectors (pGA482, pGA643, pBibKan) and bacterial strains (C58, A281, LBA4404) were tested for their ability to produce stable transgenic material. Putative transgenic plantlets were further screened by nptII-specific PCR amplification, Southern hybridization and recallusing assays. One genotype (1.5) gave only one transformant out of 432 individual trials. With the two other genotypes, efficiency of transformation (kanamycin-resistant calluses obtained/explant tested) ranged from 0 to 0.92 depending on the strain/vector combination used. Statistical interactions underline the possibility of obtaining good genotype-strain-vector combinations for alfalfa transformation. Predicted transformation probability indicates that with strain LBA4404 containing the vector pGA482 and genotype 11.9, transformation efficiency is above 60% and 10% or more of the calluses retain embryogenic potential. PCR amplification and Southern hybridization of randomly chosen regenerated plantlets demonstrated that all embryos developing on 50 μg ml-1 kanamycin had a stable genomic insertion of nptII. Sexual crosses with untransformed genotypes showed that segregation of the transgenic trait followed Mendelian heredity.
Plant Molecular Biology | 1994
Yves Castonguay; Serge Laberge; Paul Nadeau; Louis-P. Vézina
A new cold-regulated (COR) gene, msa CIC, was isolated by differential screening of a cDNA library from cold-acclimated crowns of alfalfa (Medicago sativa L. cv. Apica). Transcripts of msa CIC were not detectable in unacclimated alfalfa and accumulated to higher levels in cold-acclimated plants of the cold-tolerant cv. Apica than in those of the cold-sensitive cv. CUF-101. The DNA sequence analysis of a full-length cDNA clone revealed that msa CIC encodes for a putative protein (MSACIC) of 166 amino acids with distinct proline-rich and hydrophobic domains. Protein sequence comparisons indicated that MSACIC is similar to a group of bimodular proteins that are developmentally regulated in other plant species.
Vaccine | 2014
Brian J. Ward; Nathalie Landry; Sonia Trépanier; Geneviève Mercier; Michèle Dargis; Manon Couture; Marc-André D’Aoust; Louis-P. Vézina
BACKGROUND Plant-made biotherapeutics are gathering momentum and some plant glycoproteins are allergens. Glycans with core β1-2xylose and α1,3fucose motifs and antennae terminated by mannose residues (e.g.: MMXF) are found on several plant allergens and can cross-react with glyco-epitopes from other sources. To date, reactivity to these cross-reactive determinants has not been associated with clinical symptoms. OBJECTIVE We produced VLP vaccines bearing the hemagglutinin(HA) of H5(A/Indonesia/5/05) or H1(A/California/07/09) influenza viruses by transfection of Nicotiana benthamiana. Subjects enrolled in Phase I/II trials were followed for evidence of allergy/hypersensitivity and development of antibodies against plant glyco-epitopes. METHODS A total of 280/349 subjects received either one (H1) or 2 doses (H5) of vaccine (5-45 μg of HA/dose) intramuscularly including 40 with pre-existing plant allergies. Subjects were monitored for 6 months. IgG and IgE to plant glyco-epitopes were measured by ELISA using corn-/egg-derived avidin and bromelain as target antigens. RESULTS No subject developed allergic/hypersensitivity symptoms. Some (34%) developed transient IgG and, in some cases IgE, to plant glyco-epitopes but no subject mounted an IgE response to the MMXF motif. Antibodies returned to baseline by 6 months in most subjects. CONCLUSION VLP vaccines bearing influenza HA glycoproteins can elicit transient IgG and, in some cases, IgE responses that are not associated with either the development or worsening of allergic/hypersensitivity symptoms.
Methods of Molecular Biology | 2009
Marc-Andre D'aoust; Pierre-Olivier Lavoie; Julie Belles-Isles; Nicole Bechtold; Michèle Martel; Louis-P. Vézina
The improvements in agroinfiltration methods for plant-based transient expression now allow the production of significant amounts of recombinant proteins in a matter of days. While vacuum-based agroinfiltration has been brought to large scale to meet the cost, speed and surge capacity requirements for vaccine and therapeutic production, the more accessible and affordable syringe agroinfiltration procedure still represents a fast and high-yielding approach to recombinant protein production at lab scale. The procedure exemplified here has proven its reproducibility and high-yield capacity for the production of proteins with varying levels of complexity, including monoclonal antibodies.
Plant Molecular Biology | 1997
Jean-Marc Ferullo; Louis-P. Vézina; Jimmy Rail; Serge Laberge; Paul Nadeau; Yves Castonguay
Two mRNAs, MsaCiA and MsaCiB, encoding for proteins harboring glycine-rich motifs, accumulate in alfalfa during cold acclimation. Fusion polypeptides containing the amino acid sequences deduced from these mRNAs were produced in Escherichia coli and used to raise antibodies. Each antibody cross-reacted specifically with soluble polypeptides, MSACIA-32 and MSACIB, respectively. These polypeptides were detectable only in crowns of cold-acclimated plants, even though MsaCiA mRNA accumulated in both crows and leaves during cold acclimation. The analysis of parietal proteins showed that several MSACIA-related proteins, with a molecular mass of 32, 41 and 68 kDa, did accumulate in leaf cell walls and one of 59 kDa crown cell walls. This diversity is most probably due to a tissue-specific maturation of MSACIA. A discrepancy was found between the time-course of accumulation of MSACIB and the one of the corresponding transcript. These results indicate that timing and localization of MSACIA and MSACIB expression are different, and suggest that this differential expression involves both transcriptional and post-transcriptional events. Comparisons made among six cultivars of contrasting freezing tolerance suggest that low tolerance could be explained by failure to accumulate proteins like MSACIA and MSACIB at a sufficient level.