Louis-Solal Giboin
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louis-Solal Giboin.
Human Movement Science | 2015
Louis-Solal Giboin; Markus Gruber; Andreas Kramer
Despite much research on balance training, it is still unclear whether balance training leads to highly task-specific adaptations or rather non-specific adaptations. Hence, in this study we examined whether balance training increased performance only in the balance task that was trained or also in non-trained tasks. Forty healthy participants (28 m 12 f, 25 ± 4 years, 177 ± 10 cm, 73 ± 14 kg) were assigned to one of two training groups (TGs) or a control group. Both TGs completed six sessions over 2 weeks, only the training device differed. Before and after the training, performance in the trained task as well as in additional untrained tasks was recorded. ANOVAs showed that each TG outperformed the other groups only in the task they had trained (e.g., task trained by TG1: +225% in TG1, only +41% and +30% in TG2 and control, group*time interaction, p<0.001; Untrained task 1: TG1 +48%, TG2 +48%, and control +30%, no significant interaction, p=0.72). In summary, 2 weeks of balance training resulted in highly task-specific effects, no transfer even to very similar tasks was observed. Therefore, we recommend identifying and training exactly those tasks that need improvement, and test the efficacy of training programs using specific tests instead of general tests with limited functional relevance.
The Journal of Physiology | 2013
Véronique Marchand-Pauvert; Claire Aymard; Louis-Solal Giboin; Federica Dominici; Alessandro Rossi; Riccardo Mazzocchio
Botulinum neurototoxin type A (BoNT‐A) is known to block central synapses after muscular injection due to retrograde transport in animal models. BoNT‐A‐induced changes in the human CNS activity have been attributed so far to indirect mechanisms involving peripheral afferent inputs modified after muscular injection. The question of a possible direct central action of BoNT‐A in humans was further addressed by investigating the modification of spinal recurrent inhibition in stroke patients after BoNT‐A muscular injection. Recurrent inhibition from soleus motor axons to motoneurones supplying quadriceps was depressed after BoNT‐A injection in ankle plantarflexors. BoNT‐A, through retrograde transport, affects spinal synaptic transmission in humans.
Journal of Neurophysiology | 2012
Louis-Solal Giboin; Alexandra Lackmy-Vallée; David Burke; Véronique Marchand-Pauvert
In humans, propriospinal neurons located at midcervical levels receive peripheral and corticospinal inputs and probably participate in the control of grip tasks, but their role in reaching movements, as observed in cats and primates, is still an open question. The effect of ulnar nerve stimulation on flexor carpi radialis (FCR) motor evoked potential (MEP) was tested during reaching tasks and tonic wrist flexion. Significant MEP facilitation was observed at the end of reach during reach-to-grasp but not during grasp, reach-to-point, or tonic contractions. MEP facilitation occurred at a longer interstimulus interval than expected for convergence of corticospinal and afferent volleys at motoneuron level and was not paralleled by a change in the H-reflex. These findings suggest convergence of the two volleys at propriospinal level. Ulnar-induced MEP facilitation was observed when conditioning stimuli were at 0.75 motor response threshold (MT), but not 1 MT. This favors an increased excitability of propriospinal neurons rather than depression of their feedback inhibition, as has been observed during tonic power grip tasks. It is suggested that the ulnar-induced facilitation of FCR MEP during reach may be due to descending activation of propriospinal neurons, assisting the early recruitment of large motoneurons for rapid movement. Because the feedback inhibitory control is still open, this excitation can be truncated by cutaneous inputs from the palmar side of the hand during grasp, thus assisting movement termination. It is concluded that the feedforward activation of propriospinal neurons and their feedback control may be involved in the internal model, motor planning, and online adjustments for reach-to-grasp movements in humans.
European Journal of Neuroscience | 2012
Alexandra Lackmy-Vallée; Louis-Solal Giboin; Véronique Marchand-Pauvert
The effects of transcranial magnetic stimulation (TMS) on post‐discharge histograms of single motor units in the first dorsal interosseous have been tested to estimate the input–output properties of cortical network‐mediating short‐interval intracortical inhibition (SICI) to pyramidal cells of the human primary motor cortex. SICI was studied using the paired pulse paradigm (2‐ms interval): test TMS intensity was varied to evoke peaks of different size in post‐discharge histograms, reflecting the corticospinal excitatory post‐synaptic potential in the relevant spinal motoneuron, and conditioning TMS intensity was constant (0.6 × the resting motor threshold). Navigated brain stimulation was used to monitor the coil position. A linear relationship was observed between test peak size and test TMS intensity, reflecting linear summation of excitatory inputs induced by TMS. SICI was estimated using the difference between conditioned (produced by the paired pulses) and test peaks (produced by the isolated test pulse). Although the conditioning intensity (activating cortical inhibitory interneurons mediating SICI) was kept constant throughout the experiments, the level of SICI changed with the test peak size, in a non‐linear fashion, suggesting that low‐threshold cortical neurons (excitatory interneurons/pyramidal cells) are less sensitive to SICI than those of higher threshold. These findings provide the first experimental evidence, under physiological conditions, for non‐linear input/output properties of a complex cortical network. Consequently, changes in the recruitment gain of cortical inhibitory interneurons can greatly modify the excitability of pyramidal cells and their response to afferent inputs.
Physiological Reports | 2015
Berthe Hanna-Boutros; Sina Sangari; Louis-Solal Giboin; Mohamed-Mounir El Mendili; Alexandra Lackmy-Vallée; Véronique Marchand-Pauvert; Maria Knikou
Reciprocal Ia inhibition constitutes a key segmental neuronal pathway for coordination of antagonist muscles. In this study, we investigated the soleus H‐reflex and reciprocal inhibition exerted from flexor group Ia afferents on soleus motoneurons during standing and walking in 15 healthy subjects following transcranial magnetic stimulation (TMS). The effects of separate TMS or deep peroneal nerve (DPN) stimulation and the effects of combined (TMS + DPN) stimuli on the soleus H‐reflex were assessed during standing and at mid‐ and late stance phases of walking. Subthreshold TMS induced short‐latency facilitation on the soleus H‐reflex that was present during standing and at midstance but not at late stance of walking. Reciprocal inhibition was increased during standing and at late stance but not at the midstance phase of walking. The effects of combined TMS and DPN stimuli on the soleus H‐reflex significantly changed between tasks, resulting in an extra facilitation of the soleus H‐reflex during standing and not during walking. Our findings indicate that corticospinal inputs and Ia inhibitory interneurons interact at the spinal level in a task‐dependent manner, and that corticospinal modulation of reciprocal Ia inhibition is stronger during standing than during walking.
Frontiers in Behavioral Neuroscience | 2016
Louis-Solal Giboin; Patrick Thumm; Raphael Bertschinger; Markus Gruber
Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.
Acta Physiologica | 2018
Louis-Solal Giboin; Benjamin Weiss; Felix Alexander Thomas; Markus Gruber
Different modalities of strength training cause performance enhancements, which are specific for the trained task. However, the involved mechanisms are still largely unknown. It has been demonstrated that strength training could induce neuroplasticity, which might underlie the performance improvements during the first training sessions. Thus, we hypothesized to find task‐specific neuroplasticity after a short‐term strength training of two distinct strength tasks.
PLOS ONE | 2018
Louis-Solal Giboin; Ehsan Amiri; Raphael Bertschinger; Markus Gruber
Purpose Active recovery is often used by athletes after strenuous exercise or competition but its underlying mechanisms are not well understood. We hypothesized that active recovery speeds-up recovery processes within the muscle and the central nervous system (CNS). Methods We assessed muscular and CNS recovery by measuring the voluntary activation (VA) in the vastus lateralis muscle with transcranial magnetic stimulation (VATMS) and peripheral nerve stimulation (VAPNS) during maximal voluntary contractions (MVC) of the knee extensors in 11 subjects. Measurements were performed before and after a fatiguing cycling time-trial, after an active and a passive recovery treatment and after another fatiguing task (1 min MVC). The measurements were performed a second time 24 h after the time-trial. Results We observed a time × group interaction effect for VATMS (p = 0.013). Post-hoc corrected T-tests demonstrated an increased VATMS after active recovery when measured after the 1 min MVC performed 24 h after the time-trial (mean ± SD; 95.2 ± 4.1% vs. 89.2 ± 6.6%, p = 0.026). No significant effects were observed for all other variables. Conclusions Active recovery increased aspects of central, rather than muscle recovery. However, no effect on MVC was seen, implying that even if active recovery speeds up CNS recovery, without affecting the recovery of muscle contractile properties, this doesn´t translate into increases in overall performance.
Journal of Neuroscience Research | 2018
Louis-Solal Giboin; Markus Gruber
Transcranial direct current stimulation (tDCS) has the capacity to enhance force output during a short‐lasting maximal voluntary contraction (MVC) as well as during a long‐lasting submaximal voluntary contraction until task failure. However, its effect on an intermittent maximal effort is not known. We hypothesized that anodal tDCS applied during or before a maximal fatigue task increases the amplitude of maximal voluntary contraction (aMVC) and voluntary activation (VA) in young healthy male participants. We measured VA, potentiated twitch at rest (Ptw), root mean square electromyogram (EMG), and aMVC during a fatiguing task that consisted of 35 × 5 s MVC of knee extensors and was performed during tDCS or 10 min after the end of tDCS (sham, anodal, or cathodal treatments). No effect of tDCS was detected on the first MVC but, when compared to sham tDCS, both anodal tDCS and cathodal tDCS reduced aMVC when tDCS was applied during the task (p < .001) and only anodal tDCS reduced aMVC when applied 10 min before the task (p = .03). The reductions in aMVC were accompanied by reductions in EMG of M. vastus lateralis for both tDCS treatments as well as in Ptw only during anodal tDCS and in VA only during cathodal tDCS. Both cathodal tDCS and anodal tDCS impaired force production during an intermittent fatiguing MVC task. The detrimental effects were stronger when tDCS was applied during the task. Here, cathodal and anodal tDCS specifically affected Ptw and VA indicating different underlying mechanisms.
Frontiers in Physiology | 2018
Louis-Solal Giboin; Markus Gruber; Andreas Kramer
Background: It has been shown that balance training induces task-specific performance improvements with very limited transfer to untrained tasks. Thus, regarding fall prevention, one strategy is to practice as many tasks as possible to be prepared for a multitude of situations with increased fall risk. However, it is not clear whether the learning of several different balance tasks interfere with each other. A positive influence could be possible via the contextual interference (CI) effect, a negative influence could be induced by the disruption of motor memory during consolidation or retrieval. Methods: In two 3-week training experiments, we tested: (1) whether adding an additional balance task in the same training session would influence the learning of a balance task [first task: one-leg stance on a tilt-board (TB), six sessions, 15 × 20 s per session; additional task: one-leg stance on a slack line (SL), same amount of additional training]; (2) whether performing a different balance task (SL) in between training sessions of the first task (TB) would influence the learning of the first task. Twenty-six healthy subjects participated in the first experiment, 40 in the second experiment. In both experiments the participants were divided into three groups, TB only, TB and SL, and control. Before and after the training period, performance during the TB task (3 × 20 s) was recorded with a Vicon motion capturing system to assess the time in equilibrium. Results: Analyses of variance revealed that neither the additional intra-session balance task in experiment 1 nor the inter-session task in experiment 2 had a significant effect on balance performance improvement in the first task (no significant group × time interaction effect for the training groups, p = 0.83 and p = 0.82, respectively, only main effects of time). Conclusion: We could not find that additional intra- or intersession balance tasks interfere with the learning of a balance task, neither impairing it nor having a significant positive effect. This can also be interpreted as further evidence for the specificity of balance training effects, as different balance tasks do not seem to elicit interacting adaptations.