Louisa S. Chard
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louisa S. Chard.
Journal of Virology | 2004
Andrey V. Pisarev; Louisa S. Chard; Yoshihiro Kaku; Helen L. Johns; Ivan N. Shatsky; Graham J. Belsham
ABSTRACT Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5′ untranslated region direct the efficient internal initiation of translation in vitro and within cells. In toeprinting assays, assembly of 48S preinitiation complexes from purified components on the PTV-1 IRES was achieved with just 40S ribosomal subunits plus eIF2 and Met-tRNAiMet. Indeed, a binary complex between 40S subunits and the PTV-1 IRES is formed. Thus, the PTV-1 IRES has properties that are entirely different from other picornavirus IRES elements but highly reminiscent of the hepatitis C virus (HCV) IRES. Comparison between the PTV-1 IRES and HCV IRES elements revealed islands of high sequence identity that occur in regions critical for the interactions of the HCV IRES with the 40S ribosomal subunit and eIF3. Thus, there is significant functional and structural similarity between the IRES elements from the picornavirus PTV-1 and HCV, a flavivirus.
Journal of Virology | 2006
Louisa S. Chard; Yoshihiro Kaku; Barbara Jones; Arabinda Nayak; Graham J. Belsham
ABSTRACT The internal ribosome entry site (IRES) of porcine teschovirus 1 (PTV-1), a member of the Picornaviridae family, is quite distinct from other well-characterized picornavirus IRES elements, but it displays functional similarities to the IRES from hepatitis C virus (HCV), a member of the Flaviviridae family. In particular, a dominant negative mutant form of eIF4A does not inhibit the activity of the PTV-1 IRES. Furthermore, there is a high level (ca. 50%) of identity between the PTV-1 and HCV IRES sequences. A secondary-structure model of the whole PTV-1 IRES has been derived which includes a pseudoknot. Validation of specific features within the model has been achieved by mutagenesis and functional assays. The differences and similarities between the PTV-1 and HCV IRES elements should assist in defining the critical features of this type of IRES.
Clinical Cancer Research | 2012
James R. Tysome; Xiaozhu Li; Shengdian Wang; Pengju Wang; Dongling Gao; Pan Du; Dong Chen; Rathi Gangeswaran; Louisa S. Chard; Ming Yuan; Ghassan Alusi; Nicholas R. Lemoine; Yaohe Wang
Purpose: The efficacy of oncolytic viruses depends on multiple actions including direct tumor lysis, modulation of tumor perfusion, and stimulation of tumor-directed immune responses. In this study, we investigated whether a sequential combination of immunologically distinct viruses might enhance antitumor efficacy through the induction of tumor-specific immunity and circumvention or mitigation of antiviral immune responses. Experimental Design: The Syrian hamster as an immune-competent model that supports replication of both adenovirus and vaccinia virus was evaluated in vitro and in vivo. The antitumor efficacy of either virus alone or sequential combination of the two viruses was examined in pancreatic and kidney cancer models. The functional mechanism of the regimen developed here was investigated by histopathology, immunohistochemistry staining, CTL assay, and T-cell depletion. Results: The Syrian hamster is a suitable model for assessment of oncolytic adenovirus and vaccinia virus. Three low doses of adenovirus followed by three low doses of vaccinia virus resulted in a superior antitumor efficacy to the reverse combination, or six doses of either virus alone, against pancreatic and kidney tumors in Syrian hamsters. A total of 62.5% of animals bearing either tumor type treated with the sequential combination became tumor-free, accompanied by the induction of effective tumor-specific immunity. This enhanced efficacy was ablated by CD3+ T-cell depletion but was not associated with humoral immunity against the viruses. Conclusion: These findings show that sequential treatment of tumors with oncolytic adenovirus and vaccinia virus is a promising approach for cancer therapy and that T-cell responses play a critical role. Clin Cancer Res; 18(24); 6679–89. ©2012 AACR.
Journal of Virology | 2015
Ming Yuan; Wensheng Zhang; Jun Wang; Chadwan Al Yaghchi; Jahangir Ahmed; Louisa S. Chard; Nicholas R. Lemoine; Yaohe Wang
ABSTRACT Vaccinia virus (VACV) continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer since its use for the eradication of smallpox. However, the current method of editing the VACV genome is not efficient. Here, we demonstrate that the CRISPR-Cas9 system can be used to edit the VACV genome rapidly and efficiently. Additionally, a set of 8,964 computationally designed unique guide RNAs (gRNAs) targeting all VACV genes will be valuable for the study of VACV gene functions.
Journal of Virology | 2002
Yoshihiro Kaku; Louisa S. Chard; Toru Inoue; Graham J. Belsham
ABSTRACT The teschoviruses constitute a recently defined picornavirus genus. Most of the genome sequence of the porcine teschovirus-1 (PTV) Talfan and several other strains is known. We now demonstrate that initiation of protein synthesis occurs at nucleotide (nt) 412 on the PTV Talfan RNA and that nt 1 to 405 contains an internal ribosome entry site (IRES) that functions efficiently in vitro and within mammalian cells. In comparison with other picornavirus IRES elements, the PTV IRES is relatively short and lacks a significant polypyrimidine tract near the 3′ end. Expression of an enterovirus 2A protease, which induces cleavage of eIF4G within the translation initiation complex eIF4F, has little effect on the PTV IRES activity within BHK cells. The PTV IRES has a unique set of properties and represents a new class of picornavirus IRES element.
Clinical Cancer Research | 2015
Louisa S. Chard; Eleni Maniati; Pengju Wang; Zhongxian Zhang; Dongling Gao; Jiwei Wang; Fengyu Cao; Jahangir Ahmed; Margueritte El Khouri; J Hughes; Shengdian Wang; Xiaozhu Li; Béla Dénes; Istvan Fodor; Thorsten Hagemann; Nicholas R. Lemoine; Yaohe Wang
Purpose: Vaccinia virus has strong potential as a novel therapeutic agent for treatment of pancreatic cancer. We investigated whether arming vaccinia virus with interleukin-10 (IL10) could enhance the antitumor efficacy with the view that IL10 might dampen the host immunity to the virus, increasing viral persistence, thus maximizing the oncolytic effect and antitumor immunity associated with vaccinia virus. Experimental Design: The antitumor efficacy of IL10-armed vaccinia virus (VVLΔTK-IL10) and control VVΔTK was assessed in pancreatic cancer cell lines, mice bearing subcutaneous pancreatic cancer tumors and a pancreatic cancer transgenic mouse model. Viral persistence within the tumors was examined and immune depletion experiments as well as immunophenotyping of splenocytes were carried out to dissect the functional mechanisms associated with the viral efficacy. Results: Compared with unarmed VVLΔTK, VVLΔTK-IL10 had a similar level of cytotoxicity and replication in vitro in murine pancreatic cancer cell lines, but rendered a superior antitumor efficacy in the subcutaneous pancreatic cancer model and a K-ras-p53 mutant-transgenic pancreatic cancer model after systemic delivery, with induction of long-term antitumor immunity. The antitumor efficacy of VVLΔTK-IL10 was dependent on CD4+ and CD8+, but not NK cells. Clearance of VVLΔTK-IL10 was reduced at early time points compared with the control virus. Treatment with VVLΔTK-IL10 resulted in a reduction in virus-specific, but not tumor-specific CD8+ cells compared with VVLΔTK. Conclusions: These results suggest that VVLΔTK-IL10 has strong potential as an antitumor therapeutic for pancreatic cancer. Clin Cancer Res; 21(2); 405–16. ©2014 AACR.
Molecular therapy. Methods & clinical development | 2015
Ming Yuan; Xuefei Gao; Louisa S. Chard; Zarah Ali; Jahangir Ahmed; Yunqing Li; Pentao Liu; Nicholas R. Lemoine; Yaohe Wang
The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (~90%) in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.
Journal of Virology | 2013
Crispin T. Hiley; Louisa S. Chard; Rathi Gangeswaran; James R. Tysome; Arnaud Briat; Nicholas R. Lemoine; Yaohe Wang
ABSTRACT Vaccinia virus (VV) is an enveloped DNA virus from the poxvirus family and has played a crucial role in the eradication of smallpox. It continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer. However, the mechanisms of poxvirus entry, the host factors that affect viral virulence, and the reasons for its natural tropism for tumor cells are incompletely understood. By studying the effect of hypoxia on VV infection, we found that vascular endothelial growth factor A (VEGF-A) augments oncolytic VV cytotoxicity. VEGF derived from tumor cells acts to increase VV internalization, resulting in increased replication and cytotoxicity in an AKT-dependent manner in both tumor cells and normal respiratory epithelial cells. Overexpression of VEGF also enhances VV infection within tumor tissue in vivo after systemic delivery. These results highlight the importance of VEGF expression in VV infection and have potential implications for the design of new strategies to prevent poxvirus infection and the development of future generations of oncolytic VV in combination with conventional or biological therapies.
OncoImmunology | 2015
Louisa S. Chard; Nicholas R. Lemoine; Yaohe Wang
Although the profile of safety of tumor-targeted oncolytic virus (TOV) is encouraging, the antitumor efficacy of TOV alone is disappointing. Interleukin-10 (IL-10) plays an important role in carcinogenesis and anti-virus immunity. Here we report that tumor-targeted oncolytic vaccinia virus (VV) armed with IL10 shows promising potential for treatment of pancreatic cancer (PaCa).
Journal of Visualized Experiments | 2016
Ming Yuan; Pengju Wang; Louisa S. Chard; Nicholas R. Lemoine; Yaohe Wang
The CRISPR-associated endonuclease Cas9 can edit particular genomic loci directed by a single guide RNA (gRNA). The CRISPR/Cas9 system has been successfully employed for editing genomes of various organisms. Here we describe a protocol for editing the vaccinia virus (VV) genome in the cytoplasm of VV-infected CV-1 cells using the RNA-guided Cas9. RNA-guided Cas9 induces double-stranded DNA breaks facilitating homologous recombination efficiently and specifically in the targeted site of VV and a transgene can be incorporated into these sites by homologous recombination. By using a site-specific homologous vector with transgene(s), a N1L gene-deleted VV with the red fluorescence protein (RFP) gene incorporated in this region was generated with a successful recombination efficiency 10 times greater than that obtained from the conventional homologous recombination method. This protocol demonstrates successful use of RNA-guided Cas9 system to generate mutant VVs with enhanced efficiency.