Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise C. Laurent is active.

Publication


Featured researches published by Louise C. Laurent.


Genome Research | 2010

Dynamic changes in the human methylome during differentiation

Louise C. Laurent; Eleanor Wong; Guoliang Li; Tien Huynh; Aristotelis Tsirigos; Chin Thing Ong; Hwee Meng Low; Ken Wing Kin Sung; Isidore Rigoutsos; Jeanne F. Loring; Chia-Lin Wei

DNA methylation is a critical epigenetic regulator in mammalian development. Here, we present a whole-genome comparative view of DNA methylation using bisulfite sequencing of three cultured cell types representing progressive stages of differentiation: human embryonic stem cells (hESCs), a fibroblastic differentiated derivative of the hESCs, and neonatal fibroblasts. As a reference, we compared our maps with a methylome map of a fully differentiated adult cell type, mature peripheral blood mononuclear cells (monocytes). We observed many notable common and cell-type-specific features among all cell types. Promoter hypomethylation (both CG and CA) and higher levels of gene body methylation were positively correlated with transcription in all cell types. Exons were more highly methylated than introns, and sharp transitions of methylation occurred at exon-intron boundaries, suggesting a role for differential methylation in transcript splicing. Developmental stage was reflected in both the level of global methylation and extent of non-CpG methylation, with hESC highest, fibroblasts intermediate, and monocytes lowest. Differentiation-associated differential methylation profiles were observed for developmentally regulated genes, including the HOX clusters, other homeobox transcription factors, and pluripotence-associated genes such as POU5F1, TCF3, and KLF4. Our results highlight the value of high-resolution methylation maps, in conjunction with other systems-level analyses, for investigation of previously undetectable developmental regulatory mechanisms.


Cell Stem Cell | 2011

Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture

Louise C. Laurent; Igor Ulitsky; Ileana Slavin; Ha Tran; Andrew J. Schork; Robert Morey; Candace L. Lynch; Julie V. Harness; S.J Lee; Maria J. Barrero; Sherman Ku; Marina Martynova; Ruslan Semechkin; Vasiliy Galat; Joel M. Gottesfeld; Juan Carlos Izpisua Belmonte; Charles E. Murry; Hans S. Keirstead; Hyun Sook Park; Uli Schmidt; Andrew L. Laslett; Franz Josef Müller; Caroline M. Nievergelt; Ron Shamir; Jeanne F. Loring

Genomic stability is critical for the clinical use of human embryonic and induced pluripotent stem cells. We performed high-resolution SNP (single-nucleotide polymorphism) analysis on 186 pluripotent and 119 nonpluripotent samples. We report a higher frequency of subchromosomal copy number variations in pluripotent samples compared to nonpluripotent samples, with variations enriched in specific genomic regions. The distribution of these variations differed between hESCs and hiPSCs, characterized by large numbers of duplications found in a few hESC samples and moderate numbers of deletions distributed across many hiPSC samples. For hiPSCs, the reprogramming process was associated with deletions of tumor-suppressor genes, whereas time in culture was associated with duplications of oncogenic genes. We also observed duplications that arose during a differentiation protocol. Our results illustrate the dynamic nature of genomic abnormalities in pluripotent stem cells and the need for frequent genomic monitoring to assure phenotypic stability and clinical safety.


Nature | 2012

Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells

Mason A. Israel; Shauna H. Yuan; Cedric Bardy; Sol M. Reyna; Yangling Mu; Cheryl Herrera; Michael P. Hefferan; Sebastiaan van Gorp; Kristopher L. Nazor; Francesca S. Boscolo; Christian T. Carson; Louise C. Laurent; Martin Marsala; Fred H. Gage; Anne M. Remes; Edward H. Koo; Lawrence S.B. Goldstein

Our understanding of Alzheimer’s disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer’s disease, both caused by a duplication of the amyloid-β precursor protein gene (APP; termed APPDp), two with sporadic Alzheimer’s disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APPDp patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1–40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APPDp and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer’s disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer’s disease, even though it can take decades for overt disease to manifest in patients.


Nature Biotechnology | 2012

Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells

Daniel Ramsköld; Shujun Luo; Yu-Chieh Wang; Robin Li; Qiaolin Deng; Omid R Faridani; Gregory A. Daniels; Irina Khrebtukova; Jeanne F. Loring; Louise C. Laurent; Gary P. Schroth; Rickard Sandberg

Genome-wide transcriptome analyses are routinely used to monitor tissue-, disease- and cell type–specific gene expression, but it has been technically challenging to generate expression profiles from single cells. Here we describe a robust mRNA-Seq protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved read coverage across transcripts, which enhances detailed analyses of alternative transcript isoforms and identification of single-nucleotide polymorphisms. We determined the sensitivity and quantitative accuracy of Smart-Seq for single-cell transcriptomics by evaluating it on total RNA dilution series. We found that although gene expression estimates from single cells have increased noise, hundreds of differentially expressed genes could be identified using few cells per cell type. Applying Smart-Seq to circulating tumor cells from melanomas, we identified distinct gene expression patterns, including candidate biomarkers for melanoma circulating tumor cells. Our protocol will be useful for addressing fundamental biological problems requiring genome-wide transcriptome profiling in rare cells.


American Journal of Obstetrics and Gynecology | 2012

Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18.

Mary E. Norton; Herb Brar; Jonathan Weiss; Ardeshir Karimi; Louise C. Laurent; Aaron B. Caughey; M. Hellen Rodriguez; John Williams; Michael E. Mitchell; Charles D. Adair; Hanmin Lee; Bo Jacobsson; Mark W. Tomlinson; Dick Oepkes; Desiree Hollemon; Andrew Sparks; Arnold Oliphant; Ken Song

OBJECTIVE We sought to evaluate performance of a noninvasive prenatal test for fetal trisomy 21 (T21) and trisomy 18 (T18). STUDY DESIGN A multicenter cohort study was performed whereby cell-free DNA from maternal plasma was analyzed. Chromosome-selective sequencing on chromosomes 21 and 18 was performed with reporting of an aneuploidy risk (High Risk or Low Risk) for each subject. RESULTS Of the 81 T21 cases, all were classified as High Risk for T21 and there was 1 false-positive result among the 2888 normal cases, for a sensitivity of 100% (95% confidence interval [CI], 95.5-100%) and a false-positive rate of 0.03% (95% CI, 0.002-0.20%). Of the 38 T18 cases, 37 were classified as High Risk and there were 2 false-positive results among the 2888 normal cases, for a sensitivity of 97.4% (95% CI, 86.5-99.9%) and a false-positive rate of 0.07% (95% CI, 0.02-0.25%). CONCLUSION Chromosome-selective sequencing of cell-free DNA and application of an individualized risk algorithm is effective in the detection of fetal T21 and T18.


The New England Journal of Medicine | 2015

Cell-free DNA Analysis for Noninvasive Examination of Trisomy

Mary E. Norton; Bo Jacobsson; Geeta K. Swamy; Louise C. Laurent; Angela C. Ranzini; Herb Brar; Mark W. Tomlinson; Leonardo Pereira; Jean Lea Spitz; Desiree Hollemon; Howard Cuckle; Thomas J. Musci; Ronald J. Wapner

BACKGROUND Cell-free DNA (cfDNA) testing for fetal trisomy is highly effective among high-risk women. However, there have been few direct, well-powered studies comparing cfDNA testing with standard screening during the first trimester in routine prenatal populations. METHODS In this prospective, multicenter, blinded study conducted at 35 international centers, we assigned pregnant women presenting for aneuploidy screening at 10 to 14 weeks of gestation to undergo both standard screening (with measurement of nuchal translucency and biochemical analytes) and cfDNA testing. Participants received the results of standard screening; the results of cfDNA testing were blinded. Determination of the birth outcome was based on diagnostic genetic testing or newborn examination. The primary outcome was the area under the receiver-operating-characteristic curve (AUC) for trisomy 21 (Downs syndrome) with cfDNA testing versus standard screening. We also evaluated cfDNA testing and standard screening to assess the risk of trisomies 18 and 13. RESULTS Of 18,955 women who were enrolled, results from 15,841 were available for analysis. The mean maternal age was 30.7 years, and the mean gestational age at testing was 12.5 weeks. The AUC for trisomy 21 was 0.999 for cfDNA testing and 0.958 for standard screening (P=0.001). Trisomy 21 was detected in 38 of 38 women (100%; 95% confidence interval [CI], 90.7 to 100) in the cfDNA-testing group, as compared with 30 of 38 women (78.9%; 95% CI, 62.7 to 90.4) in the standard-screening group (P=0.008). False positive rates were 0.06% (95% CI, 0.03 to 0.11) in the cfDNA group and 5.4% (95% CI, 5.1 to 5.8) in the standard-screening group (P<0.001). The positive predictive value for cfDNA testing was 80.9% (95% CI, 66.7 to 90.9), as compared with 3.4% (95% CI, 2.3 to 4.8) for standard screening (P<0.001). CONCLUSIONS In this large, routine prenatal-screening population, cfDNA testing for trisomy 21 had higher sensitivity, a lower false positive rate, and higher positive predictive value than did standard screening with the measurement of nuchal translucency and biochemical analytes. (Funded by Ariosa Diagnostics and Perinatal Quality Foundation; NEXT ClinicalTrials.gov number, NCT01511458.).


Nature Methods | 2011

A bioinformatic assay for pluripotency in human cells.

Franz Josef Müller; Bernhard M. Schuldt; Roy Williams; Dylan Mason; Gulsah Altun; Eirini P. Papapetrou; Sandra Danner; Johanna E. Goldmann; Arne Herbst; Nils Ole Schmidt; Josef B. Aldenhoff; Louise C. Laurent; Jeanne F. Loring

Pluripotent stem cells (PSCs) are defined by their potential to generate all cell types of an organism. The standard assay for pluripotency of mouse PSCs is cell transmission through the germline, but for human PSCs researchers depend on indirect methods such as differentiation into teratomas in immunodeficient mice. Here we report PluriTest, a robust open-access bioinformatic assay of pluripotency in human cells based on their gene expression profiles.


Nature | 2008

Regulatory networks define phenotypic classes of human stem cell lines

Franz-Josef Müller; Louise C. Laurent; Dennis Kostka; Igor Ulitsky; Roy Williams; Christina Lu; In-Hyun Park; Mahendra Rao; Ron Shamir; Philip H. Schwartz; Nils Ole Schmidt; Jeanne F. Loring

Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells—typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation—to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the ‘stem cell matrix’) that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of ∼150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein–protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.


Cell Stem Cell | 2012

Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and Their Differentiated Derivatives

Kristopher L. Nazor; Gulsah Altun; Candace L. Lynch; Ha Tran; Julie V. Harness; Ileana Slavin; Ibon Garitaonandia; Franz Josef Müller; Yu Chieh Wang; Francesca S. Boscolo; Eyitayo Fakunle; Biljana Dumevska; S.J Lee; Hyun Sook Park; Tsaiwei Olee; Darryl D. D'Lima; Ruslan Semechkin; Mana M. Parast; Vasiliy Galat; Andrew L. Laslett; Uli Schmidt; Hans S. Keirstead; Jeanne F. Loring; Louise C. Laurent

Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and transcriptional aberrations in genes subject to X chromosome inactivation (XCI) and genomic imprinting, which were not corrected during directed differentiation. We also found that specific tissue types were distinguished by unique patterns of DNA hypomethylation, which were recapitulated by DNA demethylation during in vitro directed differentiation. Our results suggest that verification of baseline epigenetic status is critical for hPSC-based disease models in which the observed phenotype depends on proper XCI or imprinting and that tissue-specific DNA methylation patterns can be accurately modeled during directed differentiation of hPSCs, even in the presence of variations in XCI or imprinting.


Stem Cells | 2008

Comprehensive MicroRNA Profiling Reveals a Unique Human Embryonic Stem Cell Signature Dominated by a Single Seed Sequence

Louise C. Laurent; Jing Chen; Igor Ulitsky; Franz-Josef Mueller; Christina Lu; Ron Shamir; Jian-Bing Fan; Jeanne F. Loring

Embryonic stem cells are unique among cultured cells in their ability to self‐renew and differentiate into a wide diversity of cell types, suggesting that a specific molecular control network underlies these features. Human embryonic stem cells (hESCs) are known to have distinct mRNA expression, global DNA methylation, and chromatin profiles, but the involvement of high‐level regulators, such as microRNAs (miRNA), in the hESC‐specific molecular network is poorly understood. We report that global miRNA expression profiling of hESCs and a variety of stem cell and differentiated cell types using a novel microarray platform revealed a unique set of miRNAs differentially regulated in hESCs, including numerous miRNAs not previously linked to hESCs. These hESC‐associated miRNAs were more likely to be located in large genomic clusters, and less likely to be located in introns of coding genes. hESCs had higher expression of oncogenic miRNAs and lower expression of tumor suppressor miRNAs than the other cell types. Many miRNAs upregulated in hESCs share a common consensus seed sequence, suggesting that there is cooperative regulation of a critical set of target miRNAs. We propose that miRNAs are coordinately controlled in hESCs, and are key regulators of pluripotence and differentiation.

Collaboration


Dive into the Louise C. Laurent's collaboration.

Top Co-Authors

Avatar

Jeanne F. Loring

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mana M. Parast

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Morey

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gulsah Altun

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Karen Sabatini

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge