Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise C. Wilson is active.

Publication


Featured researches published by Louise C. Wilson.


Nature Genetics | 2006

Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome

Tetsuya Niihori; Yoko Aoki; Yoko Narumi; Giovanni Neri; Hélène Cavé; Alain Verloes; Nobuhiko Okamoto; Raoul C. M. Hennekam; Gabriele Gillessen-Kaesbach; Dagmar Wieczorek; Maria Ines Kavamura; Kenji Kurosawa; Hirofumi Ohashi; Louise C. Wilson; Delphine Héron; Dominique Bonneau; Giuseppina Corona; Tadashi Kaname; Kenji Naritomi; Clarisse Baumann; Naomichi Matsumoto; Kumi Kato; Shigeo Kure; Yoichi Matsubara

Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two heterozygous KRAS mutations in three individuals and eight BRAF mutations in 16 individuals, suggesting that dysregulation of the RAS-RAF-ERK pathway is a common molecular basis for the three related disorders.


Science | 2008

Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism

Anita Rauch; Christian Thiel; Detlev Schindler; Ursula Wick; Yanick J. Crow; Arif B. Ekici; Anthonie J. van Essen; Timm O. Goecke; Lihadh Al-Gazali; Krystyna H. Chrzanowska; Christiane Zweier; Han G. Brunner; Kristin Becker; Cynthia J. Curry; Bruno Dallapiccola; Koenraad Devriendt; Arnd Dörfler; Esther Kinning; André Mégarbané; Peter Meinecke; Robert K. Semple; Stephanie Spranger; Annick Toutain; Richard C. Trembath; Egbert Voss; Louise C. Wilson; Raoul C. M. Hennekam; Francis de Zegher; Helmuth Günther Dörr; André Reis

Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).


Nature Genetics | 2009

Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis

Zandra A. Jenkins; Margriet van Kogelenberg; Timothy R. Morgan; Aaron Jeffs; Ryuji Fukuzawa; Esther J. Pearl; Christina Thaller; Anne V. Hing; Mary Porteous; Sixto García-Miñaúr; Axel Bohring; Didier Lacombe; Fiona Stewart; Torunn Fiskerstrand; Laurence A. Bindoff; Siren Berland; Lesley C. Adès; Michel Tchan; Albert David; Louise C. Wilson; Raoul C. M. Hennekam; Dian Donnai; Sahar Mansour; Valérie Cormier-Daire; Stephen P. Robertson

Abnormalities in WNT signaling are implicated in a broad range of developmental anomalies and also in tumorigenesis. Here we demonstrate that germline mutations in WTX (FAM123B), a gene that encodes a repressor of canonical WNT signaling, cause an X-linked sclerosing bone dysplasia, osteopathia striata congenita with cranial sclerosis (OSCS; MIM300373). This condition is typically characterized by increased bone density and craniofacial malformations in females and lethality in males. The mouse homolog of WTX is expressed in the fetal skeleton, and alternative splicing implicates plasma membrane localization of WTX as a factor associated with survival in males with OSCS. WTX has also been shown to be somatically inactivated in 11–29% of cases of Wilms tumor. Despite being germline for such mutations, individuals with OSCS are not predisposed to tumor development. The observed phenotypic discordance dependent upon whether a mutation is germline or occurs somatically suggests the existence of temporal or spatial constraints on the action of WTX during tumorigenesis.


Nature Genetics | 2012

Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

Jeroen Van Houdt; Beata Nowakowska; Sérgio B. de Sousa; Barbera D. C. van Schaik; Eve Seuntjens; Nelson Avonce; Alejandro Sifrim; Omar A. Abdul-Rahman; Marie Jose H. van den Boogaard; Armand Bottani; Marco Castori; Valérie Cormier-Daire; Matthew A. Deardorff; Isabel Filges; Alan Fryer; Jean Pierre Fryns; Simone Gana; Livia Garavelli; Gabriele Gillessen-Kaesbach; Bryan D. Hall; Denise Horn; Danny Huylebroeck; Jakub Klapecki; Małgorzata Krajewska-Walasek; Alma Kuechler; Saskia M. Maas; Kay D. MacDermot; Shane McKee; Alex Magee; Stella A. de Man

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.


Journal of Medical Genetics | 1994

Parental origin of Gs alpha gene mutations in Albright's hereditary osteodystrophy.

Louise C. Wilson; M E Oude Luttikhuis; Peter Clayton; W D Fraser; Richard C. Trembath

Heterozygous mutations of the Gs alpha gene leading to reduced Gs alpha activity have been identified in patients with Albrights hereditary osteodystrophy (AHO). However, AHO may be associated with hormone resistance (pseudohypoparathyroidism type Ia, PHPIa) or a normal response (pseudo-pseudohypoparathyroidism, PPHP). As both disorders may occur within the same family, the relationship between Gs alpha genotype and phenotype remains unresolved. The AHO phenotype may be dependent upon the sex of the parent transmitting the Gs alpha mutation, perhaps through a gene imprinting mechanism. We have used an intragenic Gs alpha FokI polymorphism to determine the parental origin of Gs alpha gene mutations in sporadic and familial AHO. We now show that a de novo G-->A substitution at the exon 5 donor splice junction in a child with PPHP was paternally derived. Furthermore, in a female with PPHP, the Gs alpha abnormality was shown to be of paternal origin, while subsequent maternal processing and transmission resulted in PHPIa in two offspring. As transmission of PPHP has rarely been reported, determining parental origin of the disease allele in sporadic cases may provide insight into the mechanism of hormone resistance in AHO.


Journal of Medical Genetics | 2005

Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype

Sue Shackleton; Dawn T. Smallwood; Peter Clayton; Louise C. Wilson; Anil K. Agarwal; Abhimanyu Garg; Richard C. Trembath

Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …


Nature Genetics | 2013

Mutations in TCF12 , encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis

Vikram P Sharma; Aimée L. Fenwick; Mia S Brockop; Simon J. McGowan; Jacqueline A.C. Goos; A. Jeannette M. Hoogeboom; Angela F. Brady; Nu Owase Jeelani; Sally Ann Lynch; John B. Mulliken; Dylan J. Murray; Julie M Phipps; Elizabeth Sweeney; Susan Tomkins; Louise C. Wilson; Sophia Bennett; Richard J. Cornall; John Broxholme; Alexander Kanapin; David W. Johnson; Steven A. Wall; Peter J. van der Spek; Irene M.J. Mathijssen; Robert Maxson; Stephen R.F. Twigg; Andrew O.M. Wilkie

Craniosynostosis, the premature fusion of the cranial sutures, is a heterogeneous disorder with a prevalence of ∼1 in 2,200 (refs. 1,2). A specific genetic etiology can be identified in ∼21% of cases, including mutations of TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, and causes Saethre-Chotzen syndrome, typically associated with coronal synostosis. Using exome sequencing, we identified 38 heterozygous TCF12 mutations in 347 samples from unrelated individuals with craniosynostosis. The mutations predominantly occurred in individuals with coronal synostosis and accounted for 32% and 10% of subjects with bilateral and unilateral pathology, respectively. TCF12 encodes one of three class I E proteins that heterodimerize with class II bHLH proteins such as TWIST1. We show that TCF12 and TWIST1 act synergistically in a transactivation assay and that mice doubly heterozygous for loss-of-function mutations in Tcf12 and Twist1 have severe coronal synostosis. Hence, the dosage of TCF12-TWIST1 heterodimers is critical for normal coronal suture development.


Nature Genetics | 2012

Dominant missense mutations in ABCC9 cause Cantú syndrome

Magdalena Harakalova; Jeske van Harssel; Paulien A. Terhal; Stef van Lieshout; Karen Duran; Ivo Renkens; David J. Amor; Louise C. Wilson; Edwin P. Kirk; Claire Turner; Debbie Shears; Sixto García-Miñaúr; Melissa Lees; Alison Ross; Hanka Venselaar; Gert Vriend; Hiroki Takanari; Martin B. Rook; Marcel A.G. van der Heyden; Folkert W. Asselbergs; Hans M Breur; Marielle Swinkels; Ingrid Scurr; Sarah F. Smithson; Nine V.A.M. Knoers; Jasper J. van der Smagt; Isaac J. Nijman; Wigard P. Kloosterman; Mieke M. van Haelst; Gijs van Haaften

Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (KATP) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the KATP channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.


American Journal of Medical Genetics Part A | 2007

Molecular and clinical characterization of cardio-facio-cutaneous (CFC) syndrome: overlapping clinical manifestations with Costello syndrome.

Yoko Narumi; Yoko Aoki; Tetsuya Niihori; Giovanni Neri; Hélène Cavé; Alain Verloes; Caroline Nava; Maria Ines Kavamura; Nobuhiko Okamoto; Kenji Kurosawa; Raoul C. M. Hennekam; Louise C. Wilson; Gabriele Gillessen-Kaesbach; Dagmar Wieczorek; Pablo Lapunzina; Hirofumi Ohashi; Yoshio Makita; Ikuko Kondo; Shigeru Tsuchiya; Etsuro Ito; Kiyoko Sameshima; Kumi Kato; Shigeo Kure; Yoichi Matsubara

Cardio‐facio‐cutaneous (CFC) syndrome is a multiple congenital anomaly/mental retardation syndrome characterized by heart defects, a distinctive facial appearance, ectodermal abnormalities and mental retardation. Clinically, it overlaps with both Noonan syndrome and Costello syndrome, which are caused by mutations in two genes, PTPN11 and HRAS, respectively. Recently, we identified mutations in KRAS and BRAF in 19 of 43 individuals with CFC syndrome, suggesting that dysregulation of the RAS/RAF/MEK/ERK pathway is a molecular basis for CFC syndrome. The purpose of this study was to perform comprehensive mutation analysis in 56 patients with CFC syndrome and to investigate genotype–phenotype correlation. We analyzed KRAS, BRAF, and MAP2K1/2 (MEK1/2) in 13 new CFC patients and identified five BRAF and one MAP2K1 mutations in nine patients. We detected one MAP2K1 mutation in three patients and four new MAP2K2 mutations in four patients out of 24 patients without KRAS or BRAF mutations in the previous study [Niihori et al., 2006 ]. No mutations were identified in MAPK3/1 (ERK1/2) in 21 patients without any mutations. In total, 35 of 56 (62.5%) patients with CFC syndrome had mutations (3 in KRAS, 24 in BRAF, and 8 in MAP2K1/2). No significant differences in clinical manifestations were found among 3 KRAS‐positive patients, 16 BRAF‐positive patients, and 6 MAP2K1/2‐positive patients. Wrinkled palms and soles, hyperpigmentation and joint hyperextension, which have been commonly reported in Costello syndrome but not in CFC syndrome, were observed in 30–40% of the mutation‐positive CFC patients, suggesting a significant clinical overlap between these two syndromes.


American Journal of Medical Genetics Part A | 2009

Elements of morphology: Standard terminology for the ear

Alasdair G. W. Hunter; Jaime L. Frías; Gabriele Gillessen-Kaesbach; Helen E. Hughes; Kenneth Lyons Jones; Louise C. Wilson

An international group of clinicians working in the field of dysmorphology has initiated the standardization of terms used to describe human morphology. The goals are to standardize these terms and reach consensus regarding their definitions. In this way, we will increase the utility of descriptions of the human phenotype and facilitate reliable comparisons of findings among patients. Discussions with other workers in dysmorphology and related fields, such as developmental biology and molecular genetics, will become more precise. Here we introduce the anatomy of the ear and define and illustrate the terms that describe the major characteristics of the ear.

Collaboration


Dive into the Louise C. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Lees

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine M. Hall

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Fryer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Emma Wakeling

London North West Healthcare NHS Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge