Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Elander is active.

Publication


Featured researches published by Louise Elander.


Nature Medicine | 2013

Evidence for two types of brown adipose tissue in humans

Martin E. Lidell; Matthias J. Betz; Olof Dahlqvist Leinhard; Mikael Heglind; Louise Elander; Marc Slawik; Thomas Mussack; Daniel Nilsson; Thobias Romu; Pirjo Nuutila; Kirsi A. Virtanen; Felix Beuschlein; Anders Persson; Magnus Borga; Sven Enerbäck

The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.


Endocrinology | 2009

The Role of Interleukin-6 in Lipopolysaccharide-Induced Fever by Mechanisms Independent of Prostaglandin E2

Camilla Nilsberth; Louise Elander; Namik Hamzic; Maria Norell; Johanna Lönn; Linda Engström; Anders Blomqvist

Fever has been shown to be elicited by prostaglandin E(2) (PGE(2)) binding to its receptors on thermoregulatory neurons in the anterior hypothalamus. The signals that trigger PGE(2) production are thought to include proinflammatory cytokines, such as IL-6. However, although the presence of IL-6 is critical for fever, IL-6 by itself is not or only weakly pyrogenic. Here we examined the relationship between IL-6 and PGE(2) in lipopolysaccharide (LPS)-induced fever. Immune-challenged IL-6 knockout mice did not produce fever, in contrast to wild-type mice, but the expression of the inducible PGE(2)-synthesizing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase-1, was similarly up-regulated in the hypothalamus of both genotypes, which also displayed similarly elevated PGE(2) levels in the cerebrospinal fluid. Nevertheless, both wild-type and knockout mice displayed a febrile response to graded concentrations of PGE(2) injected into the lateral ventricle. There was no major genotype difference in the expression of IL-1beta and TNFalpha or their receptors, and pretreatment of IL-6 knockout mice with soluble TNFalpha receptor ip or intracerebroventricularly or a cyclooxygenase-2 inhibitor ip did not abolish the LPS unresponsiveness. Hence, although IL-6 knockout mice have both an intact PGE(2) synthesis and an intact fever-generating pathway downstream of PGE(2), endogenously produced PGE(2) is not sufficient to produce fever in the absence of IL-6. The findings suggest that IL-6 controls some factor(s) in the inflammatory cascade, which render(s) IL-6 knockout mice refractory to the pyrogenic action of PGE(2), or that it is involved in the mechanisms that govern release of synthesized PGE(2) onto its target neurons.


Neuropharmacology | 2013

Acetaminophen reduces lipopolysaccharide-induced fever by inhibiting cyclooxygenase-2.

Linda Engström Ruud; Daniel Björk Wilhelms; Anna Eskilsson; Ana Maria Vasilache; Louise Elander; David Engblom; Anders Blomqvist

Acetaminophen is one of the worlds most commonly used drugs to treat fever and pain, yet its mechanism of action has remained unclear. Here we tested the hypothesis that acetaminophen blocks fever through inhibition of cyclooxygenase-2 (Cox-2), by monitoring lipopolysaccharide induced fever in mice with genetic manipulations of enzymes in the prostaglandin cascade. We exploited the fact that lowered levels of a specific enzyme make the system more sensitive to any further inhibition of the same enzyme. Mice were immune challenged by an intraperitoneal injection of bacterial wall lipopolysaccharide and their body temperature recorded by telemetry. We found that mice heterozygous for Cox-2, but not for microsomal prostaglandin E synthase-1 (mPGES-1), displayed attenuated fever, indicating a rate limiting role of Cox-2. We then titrated a dose of acetaminophen that did not inhibit the lipopolysaccharide-induced fever in wild-type mice. However, when the same dose of acetaminophen was given to Cox-2 heterozygous mice, the febrile response to lipopolysaccharide was strongly attenuated, resulting in an almost normalized temperature curve, whereas no difference was seen between wild-type and heterozygous mPGES-1 mice. Furthermore, the fever to intracerebrally injected prostaglandin E₂ was unaffected by acetaminophen treatment. These findings reveal that acetaminophen, similar to aspirin and other non-steroidal anti-inflammatory drugs, is antipyretic by inhibiting cyclooxygenase-2, and not by inhibiting mPGES-1 or signaling cascades downstream of prostaglandin E₂.


Neuroscience Letters | 2010

Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide.

Louise Elander; Johan Ruud; Marina Korotkova; Per-Johan Jakobsson; Anders Blomqvist

Immune-induced activation of the hypothalamus-pituitary-adrenal axis is mediated by cyclooxygenase derived prostaglandins. Here we examined the role of cyclooxygenase-1 in this response, by using genetically modified mice as well as pharmacological inhibition. We found that mice with a deletion of the gene encoding cyclooxygenase-1, in contrast to wild type mice, did not show increased plasma corticosterone at 1h after immune challenge by peripheral injection of bacterial wall lipopolysaccharide, whereas the corticosterone levels were similarly elevated in both genotypes at 6h post-injection. Pretreatment of mice with the selective cyclooxygenase-1 inhibitor SC-560, given orally, likewise inhibited the rapid corticosterone response. These findings, taken together with our recent demonstration that the delayed stress hormone response to immune challenge is dependent on cyclooxygenase-2, show that the two cyclooxygenase isoforms play distinct, but temporally supplementary roles for the stress hormone response to inflammation.


Journal of Magnetic Resonance Imaging | 2015

Characterization of brown adipose tissue by water–fat separated magnetic resonance imaging

Thobias Romu; Louise Elander; Olof Dahlqvist Leinhard; Martin E. Lidell; Matthias J. Betz; Anders Persson; Sven Enerbäck; Magnus Borga

To evaluate the possibility of quantifying brown adipose tissue (BAT) volume and fat concentration with a high resolution, long echo time, dual‐echo Dixon imaging protocol.


Brain Behavior and Immunity | 2017

The involvement of prostaglandin E2 in interleukin-1β evoked anorexia is strain dependent

Anna Nilsson; Louise Elander; Martin Hallbeck; Unn Örtegren Kugelberg; David Engblom; Anders Blomqvist

From experiments in mice in which the prostaglandin E2 (PGE2) synthesizing enzyme mPGES-1 was genetically deleted, as well as from experiments in which PGE2 was injected directly into the brain, PGE2 has been implicated as a mediator of inflammatory induced anorexia. Here we aimed at examining which PGE2 receptor (EP1-4) that was critical for the anorexic response to peripherally injected interleukin-1β (IL-1β). However, deletion of neither EP receptor in mice, either globally (for EP1, EP2, and EP3) or selectively in the nervous system (EP4), had any effect on the IL-1β induced anorexia. Because these mice were all on a C57BL/6 background, whereas previous observations demonstrating a role for induced PGE2 in IL-1β evoked anorexia had been carried out on mice on a DBA/1 background, we examined the anorexic response to IL-1β in mice with deletion of mPGES-1 on a C57BL/6 background and a DBA/1 background, respectively. We confirmed previous findings that mPGES-1 knock-out mice on a DBA/1 background displayed attenuated anorexia to IL-1β; however, mice on a C57BL/6 background showed the same profound anorexia as wild type mice when carrying deletion of mPGES-1, while displaying almost normal food intake after pretreatment with a cyclooxygenase-2 inhibitor. We conclude that the involvement of induced PGE2 in IL-1β evoked anorexia is strain dependent and we suggest that different routes that probably involve distinct prostanoids exist by which inflammatory stimuli may evoke an anorexic response and that these routes may be of different importance in different strains of mice.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2007

IL-1β and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1

Louise Elander; Linda Engström; Martin Hallbeck; Anders Blomqvist


The Journal of Neuroscience | 2009

Inducible Prostaglandin E2 Synthesis Interacts in a Temporally Supplementary Sequence with Constitutive Prostaglandin-Synthesizing Enzymes in Creating the Hypothalamic–Pituitary–Adrenal Axis Response to Immune Challenge

Louise Elander; Linda Engström; Johan Ruud; Ludmila Mackerlova; Per-Johan Jakobsson; David Engblom; Camilla Nilsberth; Anders Blomqvist


ISMRM 20th Annual Meeting & Exhibition, 5 - 11 May 2012, Melbourne, Australia | 2012

High resolution symmetrically sampled two point Dixon imaging

Thobias Romu; Louise Elander; Olof Dahlqvist Leinhard; Magnus Borga


Archive | 2011

beta in rats block feeding-suppressive effects of LPS and IL-1 Subdiaphragmatic vagal deafferentation fails to

Louise Elander; Linda Engström; Martin Hallbeck; Anders Blomqvist; Tracey J Weiland; Nicholas J. Voudouris; Stephen Kent

Collaboration


Dive into the Louise Elander's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge