Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Hecker is active.

Publication


Featured researches published by Louise Hecker.


Nature Medicine | 2009

NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury

Louise Hecker; Ragini Vittal; Tamara R. Jones; Rajesh Jagirdar; Tracy R. Luckhardt; Jeffrey C. Horowitz; Subramaniam Pennathur; Fernando J. Martinez; Victor J. Thannickal

Members of the NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to reactive oxygen species, have increased in number during eukaryotic evolution. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants. The prototypical member of this family, NOX-2 (gp91phox), is expressed in phagocytic cells and mediates microbicidal activities. Here we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX-4 expression in lung mesenchymal cells via SMAD-3, a receptor-regulated protein that modulates gene transcription. NOX-4–dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1–induced myofibroblast differentiation, extracellular matrix (ECM) production and contractility. NOX-4 is upregulated in lungs of mice subjected to noninfectious injury and in cases of human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX-4 abrogates fibrogenesis in two murine models of lung injury. These studies support a function for NOX4 in tissue fibrogenesis and provide proof of concept for therapeutic targeting of NOX-4 in recalcitrant fibrotic disorders.


Science Translational Medicine | 2014

Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance

Louise Hecker; Naomi J. Logsdon; Deepali Kurundkar; Ashish Kurundkar; Karen Bernard; Thomas D. Hock; Eric Meldrum; Yan Y. Sanders; Victor J. Thannickal

Fibrosis resolution is impaired by aging and is mediated by altered cellular redox homeostasis because of a Nox4-Nrf2 imbalance that promotes an apoptosis-resistant myofibroblast phenotype. Scarred for Life? Fibrosis or “scarring” of vital internal organs is an increasing cause of debilitation and death worldwide. The risk of organ fibrosis increases with age, accounting for a growing “epidemic” of fibrotic disorders in aging populations such as in the United States. A study by Hecker et al. provides new insights into how the aging process may lead to a predisposition to fibrosis. In a mouse model of injury-induced lung fibrosis, these investigators found that the ability to resolve fibrosis was impaired in aged mice compared to young cohorts. Resolution of fibrosis is normally dependent on a process known as “apoptosis” (or programmed cell death) of myofibroblasts in injured tissues; this normal wound-healing response was found to be less efficient in aged mice. Myofibroblasts from aged mice acquired a prolonged senescent and apoptosis-resistant phenotype, which was attributed to an imbalance between the oxidant-generating enzyme Nox4 [reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4] and the antioxidant response factor Nrf2 (NFE2-related factor 2). Genetic or pharmacologic approaches to suppress the expression or activation of Nox4 in aged mice with persistent fibrosis enhanced the capacity for fibrosis resolution. There was evidence for Nox4-Nrf2 imbalance and apoptosis-resistant behavior of myofibroblasts in the lungs of human subjects with the progressive and fatal fibrotic disorder idiopathic pulmonary fibrosis. The results of these studies improve our understanding of how and why elderly patients become susceptible to progressive fibrotic disorders, such as idiopathic pulmonary fibrosis. Additionally, this study uncovers new approaches for treating fibrotic disorders by targeting the “stubborn” and apoptosis-resistant myofibroblast. The incidence and prevalence of pathological fibrosis increase with advancing age, although mechanisms for this association are unclear. We assessed the capacity for repair of lung injury in young (2 months) and aged (18 months) mice. Whereas the severity of fibrosis was not different between these groups, aged mice demonstrated an impaired capacity for fibrosis resolution. Persistent fibrosis in lungs of aged mice was characterized by the accumulation of senescent and apoptosis-resistant myofibroblasts. These cellular phenotypes were sustained by alterations in cellular redox homeostasis resulting from elevated expression of the reactive oxygen species–generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4] and an impaired capacity to induce the Nrf2 (NFE2-related factor 2) antioxidant response. Lung tissues from human subjects with idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, also demonstrated this Nox4-Nrf2 imbalance. Nox4 mediated senescence and apoptosis resistance in IPF fibroblasts. Genetic and pharmacological targeting of Nox4 in aged mice with established fibrosis attenuated the senescent, antiapoptotic myofibroblast phenotype and led to a reversal of persistent fibrosis. These studies suggest that loss of cellular redox homeostasis promotes profibrotic myofibroblast phenotypes that result in persistent fibrosis associated with aging. Our studies suggest that restoration of Nox4-Nrf2 redox balance in myofibroblasts may be a therapeutic strategy in age-associated fibrotic disorders, potentially able to resolve persistent fibrosis or even reverse its progression.


Journal of Clinical Investigation | 2013

Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis

Yong Zhou; Xiangwei Huang; Louise Hecker; Deepali Kurundkar; Ashish Kurundkar; Hui Liu; Tong Huan Jin; Leena P. Desai; Karen Bernard; Victor J. Thannickal

Matrix stiffening and myofibroblast resistance to apoptosis are cardinal features of chronic fibrotic diseases involving diverse organ systems. The interactions between altered tissue biomechanics and cellular signaling that sustain progressive fibrosis are not well defined. In this study, we used ex vivo and in vivo approaches to define a mechanotransduction pathway involving Rho/Rho kinase (Rho/ROCK), actin cytoskeletal remodeling, and a mechanosensitive transcription factor, megakaryoblastic leukemia 1 (MKL1), that coordinately regulate myofibroblast differentiation and survival. Both in an experimental mouse model of lung fibrosis and in human subjects with idiopathic pulmonary fibrosis (IPF), we observed activation of the Rho/ROCK pathway, enhanced actin cytoskeletal polymerization, and MKL1 cytoplasmic-nuclear shuttling. Pharmacologic disruption of this mechanotransduction pathway with the ROCK inhibitor fasudil induced myofibroblast apoptosis through a mechanism involving downregulation of BCL-2 and activation of the intrinsic mitochondrial apoptotic pathway. Treatment with fasudil during the postinflammatory fibrotic phase of lung injury or genetic ablation of Mkl1 protected mice from experimental lung fibrosis. These studies indicate that targeting mechanosensitive signaling in myofibroblasts to trigger the intrinsic apoptosis pathway may be an effective approach for treatment of fibrotic disorders.


Experimental Cell Research | 2011

Reversible differentiation of myofibroblasts by MyoD

Louise Hecker; Rajesh Jagirdar; Toni Jin; Victor J. Thannickal

Myofibroblasts participate in tissue repair processes in diverse mammalian organ systems. The deactivation of myofibroblasts is critical for termination of the reparative response and restoration of tissue structure and function. The current paradigm on normal tissue repair is the apoptotic clearance of terminally differentiated myofibroblasts; while, the accumulation of activated myofibroblasts is associated with progressive human fibrotic disorders. The capacity of myofibroblasts to undergo de-differentiation as a potential mechanism for myofibroblast deactivation has not been examined. In this report, we have uncovered a role for MyoD in the induction of myofibroblast differentiation by transforming growth factor-β1 (TGF-β1). Myofibroblasts demonstrate the capacity for de-differentiation and proliferation by modulation of endogenous levels of MyoD. We propose a model of reciprocal signaling between TGF-β1/ALK5/MyoD and mitogen(s)/ERK-MAPK/CDKs that regulate myofibroblast differentiation and de-differentiation, respectively. Our studies provide the first evidence for MyoD in controlling myofibroblast activation and deactivation. Restricted capacity for de-differentiation of myofibroblasts may underlie the progressive nature of recalcitrant human fibrotic disorders.


Redox biology | 2013

Histone Modifications in Senescence-Associated Resistance to Apoptosis by Oxidative Stress

Yan Y. Sanders; Hui Liu; Xiangyu Zhang; Louise Hecker; Karen Bernard; Leena P. Desai; Gang Liu; Victor J. Thannickal

Aging and age-related diseases are associated with cellular senescence that results in variable apoptosis susceptibility to oxidative stress. Although fibroblast senescence has been associated with apoptosis resistance, mechanisms for this have not been well defined. In this report, we studied epigenetic mechanisms involving histone modifications that confer apoptosis resistance to senescent human diploid fibroblasts (HDFs). HDFs that undergo replicative senescence display typical morphological features, express senescence-associated β-galactosidase, and increased levels of the tumor suppressor genes, p16, p21, and caveolin-1. Senescent HDFs are more resistant to oxidative stress (exogenous H2O2)-induced apoptosis in comparison to non-senescent (control) HDFs; this is associated with constitutively high levels of the anti-apoptotic gene, Bcl-2, and low expression of the pro-apoptotic gene, Bax. Cellular senescence is characterized by global increases in H4K20 trimethylation and decreases in H4K16 acetylation in association with increased activity of Suv420h2 histone methyltransferase (which targets H4K20), decreased activity of the histone acetyltransferase, Mof (which targets H4K16), as well as decreased total histone acetyltransferase activity. In contrast to Bax gene, chromatin immunoprecipitation studies demonstrate marked enrichment of the Bcl-2 gene with H4K16Ac, and depletion with H4K20Me3, predicting active transcription of this gene in senescent HDFs. These data indicate that both global and locus-specific histone modifications of chromatin regulate altered Bcl-2:Bax gene expression in senescent fibroblasts, contributing to its apoptosis-resistant phenotype.


Cellular and Molecular Life Sciences | 2012

Targeting NOX enzymes in pulmonary fibrosis

Louise Hecker; Jeff Cheng; Victor J. Thannickal

Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Oxidative stress is most often defined as an imbalance between the generation of reactive oxygen species (ROS) in excess of the capacity of cells/tissues to detoxify or scavenge them. Additionally, the regulated production of ROS participates in cellular signaling. Therapeutic strategies to treat IPF have, thus far, focused on augmenting anti-oxidant capacity. Recent studies have demonstrated a critical role for ROS-generating enzymatic systems, specifically, NADPH oxidase (NOX) family oxidoreductases in fibrotic processes. In this review, we examine the evidence for NOX isoforms in the generation and perpetuation of fibrosis, and the potential to target this gene family for the treatment of IPF and related fibrotic disorders.


Drugs | 2011

New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis

Qiang Ding; Tracy R. Luckhardt; Louise Hecker; Yong Zhou; Gang Liu; Veena B. Antony; Joao deAndrade; Victor J. Thannickal

Idiopathic pulmonary fibrosis (IPF) is the most common and lethal of the idiopathic interstitial pneumonias. There are currently no effective pharmacological therapies approved for the treatment of IPF. Despite the focus on targeting fibrogenic pathways, recent clinical trials have been largely disappointing. Progress is being made in elucidating key cellular processes and molecular pathways critical to IPF pathogenesis, and this should facilitate the development of more effective therapeutics for this recalcitrant disease. Emerging pathobiological concepts include the role of aging and cellular senescence, oxidative stress, endoplasmic reticulum stress, cellular plasticity, microRNAs and mechanotransduction. Therapeutic approaches that target molecular pathways to modulate aberrant cellular phenotypes and promote tissue homeostasis in the lung must be developed. Heterogeneity in biological and clinical phenotypes of IPF warrants a personalized medicine approach to diagnosis and treatment of this lung disorder.


Regenerative Medicine | 2007

Engineering the heart piece by piece: state of the art in cardiac tissue engineering

Louise Hecker; Ravi K. Birla

According to the National Transplant Society, more than 7000 Americans in need of organs die every year owing to a lack of lifesaving organs. Bioengineering 3D organs in vitro for subsequent implantation may provide a solution to this problem. The field of tissue engineering in its most rudimentary form is focused on the developed of transplantable organ substitutes in the laboratory. The objective of this article is to introduce important technological hurdles in the field of cardiac tissue engineering. This review starts with an overview of tissue engineering, followed by an introduction to the field of cardiovascular tissue engineering and finally summarizes some of the key advances in cardiac tissue engineering; specific topics discussed in this article include cell sourcing and biomaterials, in vitro models of cardiac muscle and bioreactors. The article concludes with thoughts on the utility of tissue-engineering models in basic research as well as critical technological hurdles that need to be addressed in the future.


Antioxidants & Redox Signaling | 2014

NADPH oxidases in lung health and disease.

Karen Bernard; Louise Hecker; Tracy R. Luckhardt; Guangjie Cheng; Victor J. Thannickal

SIGNIFICANCE The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. RECENT ADVANCES The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. CRITICAL ISSUES However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. FUTURE DIRECTIONS Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease.


Zebrafish | 2008

Functional evaluation of isolated zebrafish hearts

Louise Hecker; Luda Khait; Stanley K. Sessions; Ravi K. Birla

Traditional working heart preparations, based on the original Langendorff setup, are widely used experimental models that have tremendously advanced the cardiovascular field. However, these systems can be deceivingly complex, requiring the maintenance of pH with CO(2), the delivery of oxygenated perfusate, and the need for extensive laboratory equipment. We have examined the feasibility of using isolated zebrafish (Danio rerio) hearts as an experimental model system, in which experimental procedures can be performed in the absence of the traditional requirements and sophisticated setup equipment. Isolated zebrafish hearts exhibited spontaneous contractile activity, could be electrically paced, and were responsive to pharmacologic stimulation with isoproterenol for 1.5 h after in vivo removal. Isolated zebrafish hearts offer a time- and cost-effective alternative to traditional Langendorff/working heart preparation models, and could be used to investigate cardiac function and repair.

Collaboration


Dive into the Louise Hecker's collaboration.

Top Co-Authors

Avatar

Victor J. Thannickal

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luda Khait

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Ting Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Tracy R. Luckhardt

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Karen Bernard

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi J. Logsdon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge