Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Hetherington is active.

Publication


Featured researches published by Louise Hetherington.


Journal of Cell Science | 2006

Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa

Mark A. Baker; Louise Hetherington; R. John Aitken

Fertilization of the mammalian oocyte depends on the ability of spermatozoa to undergo a process known as capacitation as they ascend the female reproductive tract. A fundamental feature of this process is a marked increase in tyrosine phosphorylation by an unusual protein kinase A (PKA)-mediated pathway. To date, the identity of the intermediate PKA-activated tyrosine kinase driving capacitation is still unresolved. In this study, we have identified SRC as a candidate intermediate kinase centrally involved in the control of sperm capacitation. Consistent with this conclusion, the SRC kinase inhibitor SU6656 was shown to suppress both tyrosine phosphorylation and hyperactivation in murine spermatozoa. Moreover, SRC co-immunoprecipitated with PKA and this interaction was found to lead to an activating phosphorylation of SRC at position Y416. We have also used difference-in-2D-gel-electrophoresis (DIGE) in combination with mass spectrometry to identify a number of SRC substrates that become phosphorylated during capacitation including enolase, HSP90 and tubulin. Our data further suggest that the activation of SRC during capacitation is negatively controlled by C-terminal SRC kinase. The latter was localized to the acrosome and flagellum of murine spermatozoa by immunocytochemistry, whereas capacitation was associated with an inactivating serine phosphosphorylation of this inhibitory kinase.


Proteomics Clinical Applications | 2007

Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis

Mark A. Baker; Gabi Reeves; Louise Hetherington; Jörg Müller; Inke Baur; R. John Aitken

A comprehensive analysis of the proteins found in human spermatozoa is essential for understanding the events leading up to, and including, fertilization and development. Proteomics offers a platform for investigating this process, provided that the dynamic range is relatively low. In this report, spermatozoa from a number of human sperm ejaculates were isolated in a pure state using discontinuous Percoll gradient centrifugation. Triton X‐100 soluble and insoluble proteins were recovered and separated by SDS‐PAGE. The separation lanes were dissected into 96 fractions and analyzed individually by LC‐MSn. A comprehensive protocol, involving LC‐MS/MS analysis eventually down to the ninth most intense peak found in the MS‐survey scan, was performed. Analysis of purified human sperm populations resulted in the identification of 1056 gene products, of which approximately 8% have not previously been characterized. The data were supported by the large number of proteins represented by expressed sequence tags in the testis. Bioinformatic analysis demonstrated that 437 of the gene products were involved in various metabolic pathways including glycolysis and oxidative phosphorylation. The inventory of proteins present in the human sperm proteome includes a number of notable discoveries including the first description of a nicotinamide adenine dinucleotide phosphate oxidase, dual‐oxidase 2, finally laying to rest any doubts about the presence of such enzymes in spermatozoa. Furthermore, a number of different classes of receptor have also been detected in these cells and are potential regulators of sperm function. This list includes at least six seven‐pass transmembrane receptors, six tyrosine kinase receptors, a tyrosine phosphatase receptor, glutamate‐gated ion channel receptors, transient receptor potential cation channels, and a non‐genomic progesterone receptor. This is the first published list of identified proteins in human spermatozoa using LC‐MS/MS analysis.


Proteomics | 2008

The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification

Mark A. Baker; Louise Hetherington; Gabi Reeves; R. John Aitken

Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S‐proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP‐1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven‐transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis‐specific kinases all of which may have some potential in the future regulation of male fertility.


Journal of Cell Science | 2004

Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation.

Mark A. Baker; Louise Hetherington; Heath Ecroyd; Shaun D. Roman; R. John Aitken

The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.


Proteomics | 2013

Head and flagella subcompartmental proteomic analysis of human spermatozoa

Mark A. Baker; Nenad Naumovski; Louise Hetherington; Anita Weinberg; Tony Velkov; R. John Aitken

Subcellular proteomics not only deepens our knowledge of what proteins are present within cells, but also opens our understanding as to where those proteins reside. Given the highly differentiated, cross‐linked state of spermatozoa, such studies have proven difficult to perform. In this study we have fractionated spermatozoa into two components, consisting of either the head or flagellar region. Following SDS‐PAGE, 1 mm slices were digested and used for LC‐MS/MS analysis. In total, 1429 proteins were identified with 721 proteins being exclusively found in the tail and 521 exclusively in the head. Not only is this the largest reported proteomic analysis of human spermatozoa, but also it has provided novel insights into the compartmentalization of proteins, particularly receptors, never previously reported to be present in this cell type.


PLOS ONE | 2012

The Molecular Chaperone HSPA2 Plays a Key Role in Regulating the Expression of Sperm Surface Receptors That Mediate Sperm-Egg Recognition

Kate A. Redgrove; Brett Nixon; Mark A. Baker; Louise Hetherington; Gordon Baker; De Yi Liu; R. John Aitken

A common defect encountered in the spermatozoa of male infertility patients is an idiopathic failure of sperm–egg recognition. In order to resolve the molecular basis of this condition we have compared the proteomic profiles of spermatozoa exhibiting an impaired capacity for sperm-egg recognition with normal cells using label free mass spectrometry (MS)-based quantification. This analysis indicated that impaired sperm–zona binding was associated with reduced expression of the molecular chaperone, heat shock 70 kDa protein 2 (HSPA2), from the sperm proteome. Western blot analysis confirmed this observation in independent patients and demonstrated that the defect did not extend to other members of the HSP70 family. HSPA2 was present in the acrosomal domain of human spermatozoa as a major component of 5 large molecular mass complexes, the most dominant of which was found to contain HSPA2 in close association with just two other proteins, sperm adhesion molecule 1 (SPAM1) and arylsulfatase A (ARSA), both of which that have previously been implicated in sperm-egg interaction. The interaction between SPAM1, ARSA and HSPA2 in a multimeric complex mediating sperm-egg interaction, coupled with the complete failure of this process when HSPA2 is depleted in infertile patients, provides new insights into the mechanisms by which sperm function is impaired in cases of male infertility.


Proteomics | 2010

Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis

Mark A. Baker; Gabi Reeves; Louise Hetherington; R. John Aitken

Following ejaculation, mammalian spermatozoa undergo an obligatory process known as capacitation, which enables these cells to bind to and fertilize an oocyte. Since spermatozoa are transcriptionally and translationally silent, the functional metamorphosis of these cells during capacitation is accomplished entirely by PTMs. Despite the importance of this process, very few studies have attempted to define the precise nature of the proteomic changes that allow spermatozoa to attain a capacitated state. Here we report the use of an IPG‐strip pre‐fractionation approach to isolate and purify tryptic peptides derived from mouse spermatozoa exhibiting varying degrees of capacitation. Following focusing, the strips were cut into 1 cm segments, the peptides extracted and run into a mass spectrometer. Label‐free, quantitative analysis of proteomic changes associated with capacitation was then performed. In total, we found 210 significant peptide changes. Of these, we could conclusively interpret the tandem mass spectra of 71 peptides, corresponding to 52 protein changes during capacitation. Many proteins including VDAC2, Fascin‐3 and sorbitol dehydrogenase (SORD) have not previously been implicated in this process. To validate our data, we were able to show significant upregulation of SORD activity during capacitation, suggesting that the polyol pathway is activated during this process.


Biology of Reproduction | 2015

Defining the Mechanisms by Which the Reactive Oxygen Species By-Product, 4-Hydroxynonenal, Affects Human Sperm Cell Function

Mark A. Baker; Anita Weinberg; Louise Hetherington; Ana-Izabel Villaverde; Tony Velkov; Jonathan B. Baell; Christopher P. Gordon

ABSTRACT Lipid peroxidation products such as the naturally occurring aldehyde 4-hydroxynonenal (4-HNE) are known to be cytotoxic toward different cell types, including spermatozoa. In order to understand this at the molecular level, we have employed a proteomic approach to characterize direct 4-HNE adducts on human spermatozoa. Several proteins were identified to be of particular interest, including aldehyde labeling of histone methyltransferase and dynein heavy chain. In addition, we found that 4-HNE bound to part of the activation segment, cysteine residue 199, of protein kinase A (PKA). Interestingly, at low levels, addition of 4-HNE had a stimulatory effect on PKA. However, this did not correlate to increased phosphotyrosine levels during capacitation. This data explains the link between reactive oxygen species and sperm toxicity. Given that epigenetic regulation is likely affected in oxidative-stressed spermatozoa, this data show that spermatozoa appear to shut down under these conditions before reaching the egg.


Developmental Biology | 2009

Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa: its implications during capacitation

Mark A. Baker; Louise Hetherington; Benjamin J. Curry; R. John Aitken

Upon ejaculation, spermatozoa undergo a series of post-translational modifications in a process known as capacitation in order to prepare for fertilization. In the absence of capacitation, fertilization cannot occur. Spermatozoa are unusual in that one of the hallmarks of capacitation is a global up-regulation in phosphotyrosine expression, which is known to be mediated upstream by PKA. Little is known about the signaling events downstream of PKA apart from the involvement of SRC, as a key mediator of PKA-induced tyrosine phosphorylation in the sperm tail. Here we describe the presence of c-Abl in mouse spermatozoa. In vitro analysis confirmed that PKA can up-regulate c-Abl kinase activity. In vivo, this tyrosine kinase was found to associate, and become threonine phosphorylated by PKA in the sperm flagellum. By treating spermatozoa with hemolysin we could demonstrate that a significant proportion of the tyrosine phosphorylation associated with capacitation could be suppressed by the c-Abl inhibitor, Gleevac. This is the first report of c-Abl being up-regulated by PKA for any cell type. We present a model, whereby these kinases may operate together with SRC to ensure optimal levels of tyrosine phosphorylation in the sperm flagellum during the attainment of a capacitated state.


Biology of Reproduction | 2005

Identification of Cytochrome-b5 Reductase as the Enzyme Responsible for NADH-Dependent Lucigenin Chemiluminescence in Human Spermatozoa

Mark A. Baker; Anton Krutskikh; Benjamin J. Curry; Louise Hetherington; R. John Aitken

Abstract Lucigenin-dependent chemiluminescence together with 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1) reduction can be detected following addition of NADH to many cell types, including human sperm suspensions. Although many reports suggest that such a phenomenon is due to reactive oxygen species production, other oxygen detecting metabolite probes, such as MCLA and luminol, do not produce a chemiluminescent signal in this model system. The enzyme responsible for NADH-dependent lucigenin chemiluminescence was purified and identified as cytochrome-b5 reductase. In support of this concept, COS-7 cells overexpressing cytochrome-b5 reductase displayed at least a 3-fold increase in the previously mentioned activity compared with mock-transfected cells. Fractions containing cytochrome-b5 reductase were capable of inducing both lucigenin-dependent chemiluminescence and WST-1 reduction. Oxygen radicals clearly did not mediate the cytochrome b5-mediated activation of these probes in vitro since neither luminol nor MCLA gave a chemiluminescence response in the presence of the enzyme and the cofactor NADH. These results emphasize the importance of the direct NADH-dependent reduction of these putative superoxide-sensitive probes by cytochrome-b5 reductase even though this enzyme does not, on its own accord, produce reactive oxygen species.

Collaboration


Dive into the Louise Hetherington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Velkov

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabi Reeves

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge