Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise N. Paton is active.

Publication


Featured researches published by Louise N. Paton.


Journal of Biological Chemistry | 2007

The High Reactivity of Peroxiredoxin 2 with H2O2 Is Not Reflected in Its Reaction with Other Oxidants and Thiol Reagents

Alexander V. Peskin; Felicia M. Low; Louise N. Paton; Ghassan J. Maghzal; Mark B. Hampton; Christine C. Winterbourn

Peroxiredoxin 2 is a member of the mammalian peroxiredoxin family of thiol proteins that is important in antioxidant defense and redox signaling. We have examined its reactivity with various biological oxidants, in order to assess its ability to act as a direct physiological target for these species. Human erythrocyte peroxiredoxin 2 was oxidized stoichiometrically to its disulfide-bonded homodimer by hydrogen peroxide, as monitored electrophoretically under nonreducing conditions. The protein was highly susceptible to oxidation by adventitious peroxide, which could be prevented by treating buffers with low concentrations of catalase. However, this did not protect peroxiredoxin 2 against oxidation by added H2O2. Experiments measuring inhibition of dimerization indicated that at pH 7.4 catalase and peroxiredoxin 2 react with hydrogen peroxide at comparable rates. A rate constant of 1.3 × 107 m-1 s-1 for the peroxiredoxin reaction was obtained from competition kinetic studies with horseradish peroxidase. This is 100-fold faster than is generally assumed. It is sufficiently high for peroxiredoxin to be a favored cellular target for hydrogen peroxide, even in competition with catalase or glutathione peroxidase. Reactions of t-butyl and cumene hydroperoxides with peroxiredoxin were also fast, but amino acid chloramines reacted much more slowly. This contrasts with other thiol compounds that react many times faster with chloramines than with hydrogen peroxide. The alkylating agent iodoacetamide also reacted extremely slowly with peroxiredoxin 2. These results demonstrate that peroxiredoxin 2 has a tertiary structure that facilitates reaction of the active site thiol with hydrogen peroxide while restricting its reactivity with other thiol reagents.


Biochemistry | 2009

Redox Potential and Peroxide Reactivity of Human Peroxiredoxin 3

Andrew G. Cox; Alexander V. Peskin; Louise N. Paton; Christine C. Winterbourn; Mark B. Hampton

Peroxiredoxins (Prxs) are a ubiquitous family of thiol peroxidases that protect cells from peroxides and have a putative role in redox signaling. In this study, we investigated the redox properties of human Prx 3, a typical 2-Cys Prx that is localized to the mitochondrial matrix. We found that Prx 3 displayed strong reactivity with H(2)O(2), with a competitive kinetic approach generating a second order rate constant of 2 x 10(7) M(-1) s(-1). This is considerably higher than typical thiols and similar to values for other mammalian 2-Cys Prxs. In contrast, Prx 3 reacted very slowly with the thiol alkylating agents iodoacetamide and N-ethylmaleimide. Using dithiothreitol redox buffers, we measured the redox potential of Prx 3 of -290 mV. This is similar to the redox potential of mitochondrial thioredoxin 2 and is consistent with optimal operation of Prx 3 in the mitochondrial matrix.


Journal of Biological Chemistry | 2013

Hyperoxidation of Peroxiredoxins 2 and 3 RATE CONSTANTS FOR THE REACTIONS OF THE SULFENIC ACID OF THE PEROXIDATIC CYSTEINE

Alexander V. Peskin; Nina Dickerhof; Rebecca A. Poynton; Louise N. Paton; Paul Pace; Mark B. Hampton; Christine C. Winterbourn

Background: H2O2 oxidizes peroxiredoxins (Prxs) to sulfenic acid intermediates which form disulfides or become hyperoxidized. Results: Rate constants for hyperoxidation and disulfide formation were obtained for Prx2 and Prx3. Conclusions: Prx2 is more susceptible than Prx3 to hyperoxidation due to slower disulfide formation. Significance: H2O2 reacts with Prx sulfenic acid faster than with most reduced thiols. Typical 2-Cys peroxiredoxins (Prxs) react rapidly with H2O2 to form a sulfenic acid, which then condenses with the resolving cysteine of the adjacent Prx in the homodimer or reacts with another H2O2 to become hyperoxidized. Hyperoxidation inactivates the Prx and is implicated in cell signaling. Prxs vary in susceptibility to hyperoxidation. We determined rate constants for disulfide formation and hyperoxidation for human recombinant Prx2 and Prx3 by analyzing the relative proportions of hyperoxidized and dimeric products using mass spectrometry as a function of H2O2 concentration (in the absence of reductive cycling) and in competition with catalase at a fixed concentration of H2O2. This gave a second order rate constant for hyperoxidation of 12,000 m−1 s−1 and a rate constant for disulfide formation of 2 s−1 for Prx2. A similar hyperoxidation rate constant for Prx3 was measured, but its rate of disulfide formation was ∼10-fold higher, making it is more resistant than Prx2 to hyperoxidation. There are two active sites within the homodimer, and at low H2O2 concentrations one site was hyperoxidized and the other present as a disulfide. Prx with two hyperoxidized sites formed progressively at higher H2O2 concentrations. Although the sulfenic acid forms of Prx2 and Prx3 are ∼1000-fold less reactive with H2O2 than their active site thiols, they react several orders of magnitude faster than most reduced thiol proteins. This observation has important implications for understanding the mechanism of peroxide sensing in cells.


Journal of Biological Chemistry | 2016

Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin

Alexander V. Peskin; Paul Pace; Jessica B. Behring; Louise N. Paton; Marjolein Soethoudt; Markus Bachschmid; Christine C. Winterbourn

Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.


Experimental Dermatology | 2007

The differential expression of proteins in the cortical cells of wool and hair fibres.

Jeffrey E. Plowman; Louise N. Paton; Warren G. Bryson

Abstract:  Three different cell types have been identified in the cortex of wool: orthocortex, mesocortex and paracortex. Fine wool fibres, particularly Merino sheep, are noted for their bilateral distribution of orthocortical and paracortical cells, with the latter following the concave side of the crimp wave. Furthermore, studies have indicated that the paracortex has a higher concentration of cysteine than the orthocortex. This has been supported by in situ hybridization studies in the follicle that have shown that sulphur‐rich proteins are initially expressed on the paracortical side of the fibre, with some becoming more uniformly spread, laterally, over the entire fibre as the keratinization process progresses. In contrast, proteins high in glycine and tyrosine tend to be expressed initially on the orthocortical side of the follicle. While these in vitro studies have pointed to where specific proteins are located in the follicle, elucidating the situation for the mature fibre has been less easy. A range of approaches have been used to separate orthocortical and paracortical cells and these have only been able to provide evidence for a higher level of cysteine in the latter. Electrophoretic studies have found a number of differences in protein expression between the two sides but have not specifically identified which proteins. Thus, there appears to be good evidence for the paracortex containing a higher proportion of proteins in the ultra‐high sulphur class but there is some uncertainty regarding the exact distribution of proteins high in glycine and tyrosine.


Archives of Biochemistry and Biophysics | 2013

Inactivation of human myeloperoxidase by hydrogen peroxide

Martina Paumann-Page; Paul G. Furtmüller; Stefan Hofbauer; Louise N. Paton; Christian Obinger; Anthony J. Kettle

Graphical abstract


Free Radical Biology and Medicine | 2010

Increased thrombin-induced polymerization of fibrinogen associated with high protein carbonyl levels in plasma from patients post myocardial infarction.

Louise N. Paton; Tessa J. Mocatta; A. Mark Richards; Christine C. Winterbourn

Increased levels of protein carbonyls have been measured in plasma of patients following a myocardial infarction (Mocatta et al. J. Am. Coll. Cardiol.49:1993-2000; 2007). In this study, we have examined representative plasma samples from this group of patients. We show that carbonyls are formed preferentially on fibrinogen and that there is a strong correlation between fibrinogen and total plasma protein carbonyls. Functional properties of fibrinogen isolated from post myocardial plasmas were investigated by measuring thrombin-catalyzed polymerization. Fibrinogen from plasma with upper quartile protein carbonyls (mean 0.16 nmol/mg protein) polymerized approximately 1.4 times more rapidly and gave 1.4-fold higher maximum turbidity (12 per group, P<0.001) than fibrinogen from lower quartile carbonyl plasma (mean 0.007 nmol/mg), which behaved similarly to control plasma. Significant differences were also apparent when related to the carbonyl content of the fibrinogen itself. These changes in the high carbonyl plasma reflect a faster rate of lateral aggregation of small oligomers to form fibrin polymers that comprise thicker, more loosely woven fibers. In vivo this could be translated into a tendency to clot faster and form more fragile clots. High protein carbonyls in fibrinogen were not associated with an increased content of nitrotyrosine or chlorotyrosine. Nitrotyrosine levels were significantly lower in fibrinogen than total plasma protein, with no difference between patients and controls. Chlorotyrosine levels in fibrinogen (but not total protein) were significantly higher for the post myocardial patients. Our data suggest that high fibrinogen protein carbonyls in heart disease could be a prothrombotic risk factor.


Free Radical Biology and Medicine | 2014

Interaction of adenanthin with glutathione and thiol enzymes: Selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling

Marjolein Soethoudt; Alexander V. Peskin; Nina Dickerhof; Louise N. Paton; Paul Pace; Christine C. Winterbourn

The diterpenoid, adenanthin, represses tumor growth and prolongs survival in mouse promyelocytic leukemia models (Liu et al., Nat. Chem. Biol. 8, 486, 2012). It was proposed that this was done by inactivating peroxiredoxins (Prxs) 1 and 2 through the formation of an adduct specifically on the resolving Cys residue. We confirmed that adenanthin underwent Michael addition to isolated Prx2, thereby inhibiting oxidation to a disulfide-linked dimer. However, contrary to the original report, both the peroxidatic and the resolving Cys residues could be derivatized. Glutathione also formed an adenanthin adduct, reacting with a second-order rate constant of 25±5 M(-1) s(-1). With 50 µM adenanthin, the peroxidatic and resolving Cys of Prx2 reacted with half-times of 7 and 40 min, respectively, compared with 10 min for GSH. When erythrocytes or Jurkat T cells were treated with adenanthin, we saw no evidence for a reaction with Prxs 1 or 2. Instead, adenanthin caused time- and concentration-dependent loss of GSH followed by dimerization of the Prxs. Prxs undergo continuous oxidation in cells and are normally recycled by thioredoxin reductase and thioredoxin. Our results indicate that Prx reduction was inhibited. We observed rapid inhibition of purified thioredoxin reductase (half-time 5 min with 2 µM adenanthin) and in cells, thioredoxin reductase was much more sensitive than GSH and loss of both preceded accumulation of oxidized Prxs. Thus, adenanthin is not a specific Prx inhibitor, and its reported antitumor and anti-inflammatory effects are more likely to involve more general inhibition of thioredoxin and/or glutathione redox pathways.


Journal of Proteomics | 2008

Investigations into charge heterogeneity of wool intermediate filament proteins

Louise N. Paton; Juliet A. Gerrard; Warren G. Bryson

Genomic studies have shown that there are four abundant type I and type II intermediate filament proteins (IFPs) in wool. When separated using 2D-PAGE, the type I IFPs separated into four clearly defined major rows. The type II IFPs separated into two distinct staggered rows. The large number of spots seen by 2D-PAGE has previously been attributed to charge heterogeneity caused by post-translational modification of the protein. However, analysis of wool IFPs by 2D-PAGE techniques and mass spectrometry suggested an absence of phosphorylation or glycosylation modifications. Investigations with both the type I and type II IFPs showed that when single protein spots from a 2D-PAGE separation are eluted, re-focused and re-electrophoresed, several spots are formed on both the acidic and basic side of the original spot. Amino acid analysis, mass spectrometry and Ellmans assay support the hypothesis that the proteins have the same sequence but vary in isoelectric charge, due to differences in exposure of charged residues on the molecular surface. The cause of IFP charge heterogeneity is thus proposed to be a conformational equilibrium between several different forms of the same protein in the rehydration solution used for the first dimension.


Journal of Proteomics | 2008

Two-dimensional gel electrophoresis of wool intermediate filament proteins.

Louise N. Paton; Juliet A. Gerrard; Warren G. Bryson

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) methods have been used to provide high-resolution separation of wool intermediate filament proteins (IFPs). An improved method of extraction was developed based on a previously published method. The improved method for extraction eliminates the use of dialysis and freeze-drying between the extraction and rehydration steps, allowing the extraction and rehydration for the first dimension gel to be achieved in one day. Improvements to the method for maintaining reducing conditions and chaotrope constitution, combined with low %T polyacrylamide gels, allowed the high-resolution separation of the two keratin IFP families and their individual family members. The IFPs were separated to produce a clearly defined spot pattern of higher intensity, with numerous minor spots not previously observed, and a marked improvement in the vertical resolution. Further work to analyse the composition of each of the protein spots has been made much easier by being able to separate the IFPs into discrete spots.

Collaboration


Dive into the Louise N. Paton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Cox

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge