Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Pettitt is active.

Publication


Featured researches published by Louise Pettitt.


Veterinary Ophthalmology | 2011

ADAMTS17 mutation associated with primary lens luxation is widespread among breeds

David J. Gould; Louise Pettitt; Bryan McLaughlin; N. G. Holmes; Oliver P. Forman; Anne Thomas; Saija Ahonen; Hannes Lohi; Caroline A. O’Leary; David R. Sargan; Cathryn S. Mellersh

Primary lens luxation (PLL) is a well-recognized, painful and potentially blinding inherited ocular condition in dogs. We screened PLL-affected dogs of 30 different breeds, to identify those which carried a previously described c.1473+1 G>A mutation in ADAMTS17 that is associated with PLL in Miniature Bull terriers, Lancashire Heelers, and Jack Russell terriers. This ADAMTS17 mutation was identified in PLL-affected dogs from 14 additional breeds. PLL-affected dogs from some breeds (most notably the Shar pei and the Brittany spaniel) did not carry the G1473+1A ADAMTS17 mutation, indicating they must suffer from a genetically distinct form of the condition. We also estimated the frequency of this ADAMTS17 mutation in some of the breeds. Our findings indicate the mutation segregates in a large number of different breeds of dog, many of which are terriers or breeds with terrier co-ancestry, but some of which have more diverse origins. Our results also indicate that the mutation is present at high frequency within most of the breeds in which it segregates. In the miniature bull terrier breed estimates of mutation frequency ranged from 0.27 to 0.39, corresponding to 7.3-15.2% PLL-affected dogs in this breed. We also identified an increased risk of PLL associated with heterozygosity at ADAMTS17, suggesting that carriers carry a low risk of developing PLL.


Journal of Medical Genetics | 2007

l-2-hydroxyglutaric aciduria: characterisation of the molecular defect in a spontaneous canine model

Jacques Penderis; Jacqui Calvin; Carley J. Abramson; Cornelis Jakobs; Louise Pettitt; M. M. Binns; Nanda M. Verhoeven; Eamonn O'Driscoll; Simon R. Platt; Cathryn S. Mellersh

l-2-hydroxyglutaric aciduria (l-2-HGA) is a neurometabolic disorder that produces a variety of clinical neurological deficits, including psychomotor retardation, seizures and ataxia. The biochemical hallmark of l-2-HGA is the accumulation of l-2-hydroxyglutaric acid (l-2-HG) in cerebrospinal fluid, plasma and urine. Mutations within the gene L2HGDH (Entrez Gene ID 79944) on chromosome 14q22 encoding L-2-hydroxyglutaric acid dehydrogenase have recently been shown to cause l-2-HGA in humans. Using a candidate gene approach in an outbred pet dog population segregating l-2-HGA, the causal molecular defect was identified in the canine homologue of L2HGDH and characterised. DNA sequencing and pedigree analysis indicate a common founder effect in the canine model. The canine model shares many of the clinical and MRI features of the disease in humans and represents a valuable resource as a spontaneous model of l-2-HGA.


Veterinary Ophthalmology | 2009

Mutation in HSF4 is associated with hereditary cataract in the Australian Shepherd.

Cathryn S. Mellersh; Bryan McLaughlin; Saija Ahonen; Louise Pettitt; Hannes Lohi; Keith C. Barnett

Cataracts are a leading cause of blindness in dogs with approximately 100 breeds affected by primary hereditary forms. Despite the large number of breeds affected with hereditary cataracts (HC) little is known about the genetics of the condition, and to date only a single gene, HSF4, has been implicated in the development of the disease in dogs. We previously identified a recessively inherited 1-bp insertion in the transcription factor gene HSF4 resulting in the loss of the open reading frame in Boston terriers and Staffordshire bull terriers. While testing the insertion mutation in other breeds with HC, we identified a 1-bp deletion at the same nucleotide of HSF4 in some Australian Shepherds with cataract. Using DNA samples from almost 400 privately owned Australian Shepherds we have investigated the association between the deletion mutation in HSF4 and cataracts in this breed. We conclude that the mutation is significantly associated with cataracts and that a dog carrying the mutation is approximately 17 times more likely to develop binocular cataracts than dogs that are clear of the mutation. The data also indicate that additional mutations associated with the development of cataracts are likely to be co-segregating in the Australian Shepherd population.


PLOS ONE | 2015

A Novel Genome-Wide Association Study Approach Using Genotyping by Exome Sequencing Leads to the Identification of a Primary Open Angle Glaucoma Associated Inversion Disrupting ADAMTS17.

Oliver P. Forman; Louise Pettitt; András M. Komáromy; Peter G. C. Bedford; Cathryn S. Mellersh

Closed breeding populations in the dog in conjunction with advances in gene mapping and sequencing techniques facilitate mapping of autosomal recessive diseases and identification of novel disease-causing variants, often using unorthodox experimental designs. In our investigation we demonstrate successful mapping of the locus for primary open angle glaucoma in the Petit Basset Griffon Vendéen dog breed with 12 cases and 12 controls, using a novel genotyping by exome sequencing approach. The resulting genome-wide association signal was followed up by genome sequencing of an individual case, leading to the identification of an inversion with a breakpoint disrupting the ADAMTS17 gene. Genotyping of additional controls and expression analysis provide strong evidence that the inversion is disease causing. Evidence of cryptic splicing resulting in novel exon transcription as a consequence of the inversion in ADAMTS17 is identified through RNAseq experiments. This investigation demonstrates how a novel genotyping by exome sequencing approach can be used to map an autosomal recessive disorder in the dog, with the use of genome sequencing to facilitate identification of a disease-associated variant.


Veterinary Ophthalmology | 2012

Congenital keratoconjunctivitis sicca and ichthyosiform dermatosis in Cavalier King Charles spaniel dogs. Part II: candidate gene study.

Claudia Hartley; Keith C. Barnett; Louise Pettitt; Oliver P. Forman; Sarah Blott; Cathryn S. Mellersh

PURPOSE To identify causative mutation(s) for congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID) in Cavalier King Charles spaniel (CKCS) dogs using a candidate gene approach. METHODS DNA samples from 21 cases/parents were collected. Canine candidate genes (CCGs) for similar inherited human diseases were chosen. Twenty-eight candidate genes were identified by searching the Pubmed OMIM database (http://www.ncbi.nlm.nih.gov/omim). Canine orthologues of human candidate genes were identified using the Ensembl orthologue prediction facility (http://www.ensembl.org/index.html). Two microsatellites flanking each candidate gene were selected, and primers to amplify each microsatellite were designed using the Whitehead Institute primer design website (http://frodo.wi.mit.edu/primer3/). The microsatellites associated with all 28 CCGs were genotyped on a panel of 21 DNA samples from CKCS dogs (13 affected and eight carriers). Genotyping data was analyzed to identify markers homozygous in affected dogs and heterozygous in carriers (homozygosity mapping). RESULTS None of the microsatellites associated with 25 of the CCGs displayed an association with CKCSID in the 21 DNA samples tested. Three CCGs associated microsatellites were monomorphic across all samples tested. CONCLUSIONS Twenty-five CCGs were excluded as cause of CKCSID. Three CCGs could not be excluded from involvement in the inheritance of CKCSID.


PLOS ONE | 2015

Two Independent Mutations in ADAMTS17 Are Associated with Primary Open Angle Glaucoma in the Basset Hound and Basset Fauve de Bretagne Breeds of Dog

James A. C. Oliver; Oliver P. Forman; Louise Pettitt; Cathryn S. Mellersh

Purpose Mutations in ADAMTS10 (CFA20) have previously been associated with primary open angle glaucoma (POAG) in the Beagle and Norwegian Elkhound. The closely related gene, ADAMTS17, has also been associated with several different ocular phenotypes in multiple breeds of dog, including primary lens luxation and POAG. We investigated ADAMTS17 as a candidate gene for POAG in the Basset Hound and Basset Fauve de Bretagne dog breeds. Methods We performed ADAMTS17 exon resequencing in three Basset Hounds and three Basset Fauve de Bretagne dogs with POAG. Identified variants were genotyped in additional sample cohorts of both breeds and dogs of other breeds to confirm their association with disease. Results All affected Basset Hounds were homozygous for a 19 bp deletion in exon 2 that alters the reading frame and is predicted to lead to a truncated protein. Fifty clinically unaffected Basset Hounds were genotyped for this mutation and all were either heterozygous or homozygous for the wild type allele. Genotyping of 223 Basset Hounds recruited for a different study revealed a mutation frequency of 0.081 and predicted frequency of affected dogs in the population to be 0.007. Based on the entire genotyping dataset the association statistic for the POAG-associated deletion was p = 1.26 x 10−10. All affected Basset Fauve de Bretagne dogs were homozygous for a missense mutation in exon 11 causing a glycine to serine amino acid substitution (G519S) in the disintegrin-like domain of ADAMTS17 which is predicted to alter protein function. Unaffected Basset Fauve de Bretagne dogs were either heterozygous for the mutation (5/24) or homozygous for the wild type allele (19/24). Based on the entire genotyping dataset the association statistic for the POAG-associated deletion was p = 2.80 x 10−7. Genotyping of 85 dogs of unrelated breeds and 90 dogs of related breeds for this variant was negative. Conclusion This report documents strong associations between two independent ADAMTS17 mutations and POAG in two different dog breeds.


G3: Genes, Genomes, Genetics | 2016

An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

Oliver P. Forman; Rebekkah J. Hitti; Louise Pettitt; Christopher A. Jenkins; Dennis P. O’Brien; G. Diane Shelton; Luisa De Risio; Rodrigo Gutierrez Quintana; Elsa Beltran; Cathryn S. Mellersh

Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population.


PLOS ONE | 2017

An intronic LINE-1 insertion in MERTK is strongly associated with retinopathy in Swedish Vallhund dogs

Richard Everson; Louise Pettitt; Oliver P. Forman; Olivia Dower-Tylee; Bryan McLaughlin; Saija Ahonen; Maria Kaukonen; András M. Komáromy; Hannes Lohi; Cathryn S. Mellersh; Jane Sansom; Sally L. Ricketts

The domestic dog segregates a significant number of inherited progressive retinal diseases, several of which mirror human retinal diseases and which are collectively termed progressive retinal atrophy (PRA). In 2014, a novel form of PRA was reported in the Swedish Vallhund breed, and the disease was mapped to canine chromosome 17. The causal mutation was not identified, but expression analyses of the retinas of affected Vallhunds demonstrated a 6-fold increased expression of the MERTK gene compared to unaffected dogs. Using 24 retinopathy cases and 97 controls with no clinical signs of retinopathy, we replicated the chromosome 17 association in Swedish Vallhunds from the UK and aimed to elucidate the causal variant underlying this association using whole genome sequencing (WGS) of an affected dog. This revealed a 6–8 kb insertion in intron 1 of MERTK that was not present in WGS of 49 dogs of other breeds. Sequencing and BLASTN analysis of the inserted segment was consistent with the insertion comprising a full-length intact LINE-1 retroelement. Testing of the LINE-1 insertion for association with retinopathy in the UK set of 24 cases and 97 controls revealed a strong statistical association (P-value 6.0 x 10−11) that was subsequently replicated in the original Finnish study set (49 cases and 89 controls (P-value 4.3 x 10−19). In a pooled analysis of both studies (73 cases and 186 controls), the LINE-1 insertion was associated with a ~20-fold increased risk of retinopathy (odds ratio 23.41, 95% confidence intervals 10.99–49.86, P-value 1.3 x 10−27). Our study adds further support for regulatory disruption of MERTK in Swedish Vallhund retinopathy; however, further work is required to establish a functional overexpression model. Future work to characterise the mechanism by which this intronic mutation disrupts gene regulation will further improve the understanding of MERTK biology and its role in retinal function.


Veterinary Ophthalmology | 2016

A Carbohydrate Sulfotransferase-6 (CHST6) gene mutation is associated with Macular Corneal Dystrophy in Labrador Retrievers

Roser Tetas Pont; Louise M. Downs; Louise Pettitt; Claudia Busse; Cathryn S. Mellersh

PURPOSE To locate and identify variants associated with macular corneal dystrophy (MCD) in Labrador Retriever (LR) dogs, in the candidate gene carbohydrate sulfotransferase-6 (CHST6). METHODS The single coding exon of canine CHST6 was sequenced in one affected LR with MCD and one control LR clinically clear of ocular disease. A further 71 control LR with unknown clinical status were sequenced for the putative causal variant in CHST6. A TaqMan SNP genotyping assay was developed and used to screen an additional 84 dogs (five affected LR and 79 clinically clear LR). Finally, the variant was screened in a third cohort of 89 unrelated LR with unknown clinical status to estimate its allele frequency in the population of LR in the United Kingdom. RESULTS A single nucleotide polymorphism (SNP) was identified within the coding exon of CHST6, resulting in a missense mutation (c.814C>A, p.R272S). All six LR affected with MCD were homozygous for the mutant allele, while 140/151 control LR were homozygous for the wild-type allele and 11/151 were heterozygous for the mutation, indicating an association with MCD (P < 10-5 ). The mutant allele was present in the unrelated LR cohort at a frequency of 0.017, suggesting carrier and affection rates of 3.3% and 0.028%, respectively. CONCLUSIONS A missense mutation in the CHST6 gene is strongly associated with autosomal recessive MCD in the LR.


American Journal of Veterinary Research | 2018

Evaluation of ADAMTS17 in Chinese Shar-Pei with primary open-angle glaucoma, primary lens luxation, or both

James A. C. Oliver; Sophie Rustidge; Louise Pettitt; Christopher A. Jenkins; Fabiana H. G. Farias; Elizabeth A. Giuliano; Cathryn S. Mellersh

OBJECTIVE To evaluate the coding regions of ADAMTS17 for potential mutations in Chinese Shar-Pei with a diagnosis of primary open-angle glaucoma (POAG), primary lens luxation (PLL), or both. ANIMALS 63 Shar-Pei and 96 dogs of other breeds. PROCEDURES ADAMTS17 exon resequencing was performed on buccal mucosal DNA from 10 Shar-Pei with a diagnosis of POAG, PLL, or both (affected dogs). A candidate causal variant sequence was identified, and additional dogs (53 Shar-Pei [11 affected and 42 unaffected] and 95 dogs of other breeds) were genotyped for the variant sequence by amplified fragment length polymorphism analysis. Total RNA was extracted from ocular tissues of 1 affected Shar-Pei and 1 ophthalmologically normal Golden Retriever; ADAMTS17 cDNA was reverse transcribed and sequenced, and ADAMTS17 expression was evaluated by quantitative reverse-transcription PCR assay. RESULTS All affected Shar-Pei were homozygous for a 6-bp deletion in exon 22 of ADAMTS17 predicted to affect the resultant protein. All unaffected Shar-Pei were heterozygous or homozygous for the wild-type allele. The variant sequence was significantly associated with affected status (diagnosis of POAG, PLL, or both). All dogs of other breeds were homozygous for the wild-type allele. The cDNA sequencing confirmed presence of the expected variant mRNA sequence in ocular tissue from the affected dog only. Gene expression analysis revealed a 4.24-fold decrease in the expression of ADAMTS17 in ocular tissue from the affected dog. CONCLUSIONS AND CLINICAL RELEVANCE Results supported that the phenotype (diagnosis of POAG, PLL, or both) is an autosomal recessive trait in Shar-Pei significantly associated with the identified mutation in ADAMTS17.

Collaboration


Dive into the Louise Pettitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Lohi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Gould

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge