Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise R. Rodino-Klapac is active.

Publication


Featured researches published by Louise R. Rodino-Klapac.


The New England Journal of Medicine | 2010

Dystrophin Immunity in Duchenne's Muscular Dystrophy

Katherine Campbell; Louise R. Rodino-Klapac; Zarife Sahenk; Chris Shilling; Sarah Lewis; Dawn E. Bowles; Steven J. Gray; Chengwen Li; Gloria Galloway; Vinod Malik; Brian D. Coley; K. Reed Clark; Juan Li; Xiao Xiao; Jade Samulski; Scott McPhee; R. Jude Samulski; Christopher M. Walker

We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchennes muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.).


Annals of Neurology | 2013

Eteplirsen for the treatment of Duchenne muscular dystrophy

Louise R. Rodino-Klapac; Zarife Sahenk; Kandice Roush; Loren Bird; Linda Lowes; Lindsay Alfano; Ann Maria Gomez; Sarah Lewis; Janaiah Kota; Vinod Malik; Kim Shontz; Christopher M. Walker; Kevin M. Flanigan; Marco Corridore; John R. Kean; Hugh D. Allen; Chris Shilling; Kathleen R. Melia; Peter Sazani; Jay B. Saoud; Edward M. Kaye

In prior open‐label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double‐blind placebo‐controlled protocol to test eteplirsens ability to induce dystrophin production and improve distance walked on the 6‐minute walk test (6MWT).


Annals of Neurology | 2010

Sustained alpha‐sarcoglycan gene expression after gene transfer in limb‐girdle muscular dystrophy, type 2D

Louise R. Rodino-Klapac; Xiomara Q. Rosales; Brian D. Coley; Gloria M. Galloway; Sarah Lewis; Vinod Malik; Chris Shilling; Barry J. Byrne; Thomas J. Conlon; Katherine J. Campbell; William G. Bremer; Laura E. Taylor; Kevin M. Flanigan; Julie M. Gastier-Foster; Caroline Astbury; Janaiah Kota; Zarife Sahenk; Christopher M. Walker; K. Reed Clark

The aim of this study was to attain long‐lasting alpha‐sarcoglycan gene expression in limb‐girdle muscular dystrophy, type 2D (LGMD2D) subjects mediated by adeno‐associated virus (AAV) gene transfer under control of a muscle specific promoter (tMCK).


Annals of Neurology | 2009

Limb-girdle muscular dystrophy type 2D gene therapy restores α-sarcoglycan and associated proteins†‡

Louise R. Rodino-Klapac; Xiomara Rosales-Quintero; Janaiah Kota; Brian D. Coley; Gloria M. Galloway; Josepha M. Craenen; Sarah Lewis; Vinod Malik; Christopher Shilling; Barry J. Byrne; Thomas J. Conlon; Katherine J. Campbell; William G. Bremer; Laurence Viollet; Christopher M. Walker; Zarife Sahenk; K. Reed Clark

α‐Sarcoglycan deficiency results in a severe form of muscular dystrophy (limb‐girdle muscular dystrophy type 2D [LGMD2D]) without treatment. Gene replacement represents a strategy for correcting the underlying defect. Questions related to this approach were addressed in this clinical trial, particularly the need for immunotherapy and persistence of gene expression.


The New England Journal of Medicine | 2017

Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy

Samiah Al-Zaidy; Richard Shell; W. Dave Arnold; Louise R. Rodino-Klapac; Thomas W. Prior; Linda Lowes; Lindsay Alfano; Katherine Berry; Kathleen Church; John T. Kissel; Sukumar Nagendran; James L’Italien; Douglas M. Sproule; Courtney Wells; Jessica Cardenas; Marjet D. Heitzer; Allan Kaspar; Sarah E. Corcoran; Lyndsey Braun; Shibi Likhite; Carlos J. Miranda; Kathrin Meyer; K.D. Foust; Arthur H.M. Burghes; Brian K. Kaspar

Background Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. Methods Fifteen patients with SMA1 received a single dose of intravenous adeno‐associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Childrens Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high‐dose cohort with scores in studies of the natural history of the disease (historical cohorts). Results As of the data cutoff on August 7, 2017, all 15 patients were alive and event‐free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. A rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. Conclusions In patients with SMA1, a single intravenous infusion of adenoviral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; ClinicalTrials.gov number, NCT02122952.)


Muscle & Nerve | 2009

INHIBITION OF MYOSTATIN WITH EMPHASIS ON FOLLISTATIN AS A THERAPY FOR MUSCLE DISEASE

Louise R. Rodino-Klapac; Amanda M. Haidet; Janaiah Kota; Chalonda Handy; Brian K. Kaspar

In most cases, pharmacologic strategies to treat genetic muscle disorders and certain acquired disorders, such as sporadic inclusion body myositis, have produced modest clinical benefits. In these conditions, inhibition of the myostatin pathway represents an alternative strategy to improve functional outcomes. Preclinical data that support this approach clearly demonstrate the potential for blocking the myostatin pathway. Follistatin has emerged as a powerful antagonist of myostatin that can increase muscle mass and strength. Follistatin was first isolated from the ovary and is known to suppress follicle‐stimulating hormone. This raises concerns for potential adverse effects on the hypothalamic–pituitary–gonadal axis and possible reproductive capabilities. In this review we demonstrate a strategy to bypass off‐target effects using an alternatively spliced cDNA of follistatin (FS344) delivered by adeno‐associated virus (AAV) to muscle. The transgene product is a peptide of 315 amino acids that is secreted from the muscle and circulates in the serum, thus avoiding cell‐surface binding sites. Using this approach our translational studies show increased muscle size and strength in species ranging from mice to monkeys. Adverse effects are avoided, and no organ system pathology or change in reproductive capabilities has been seen. These findings provide the impetus to move toward gene therapy clinical trials with delivery of AAV‐FS344 to increase size and function of muscle in patients with neuromuscular disease. Muscle Nerve 39: 283–296, 2009


Molecular Therapy | 2015

A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy

Zarife Sahenk; Vinod Malik; Ana Maria Gomez; Kevin M. Flanigan; Linda Lowes; Lindsay Alfano; Katherine Berry; Eric Meadows; Sarah Lewis; Lyndsey Braun; Kim Shontz; Maria Rouhana; Kelly Reed Clark; Xiomara Q. Rosales; Samiah Al-Zaidy; Alessandra Govoni; Louise R. Rodino-Klapac; Mark J. Hogan; Brian K. Kaspar

Becker muscular dystrophy (BMD) is a variant of dystrophin deficiency resulting from DMD gene mutations. Phenotype is variable with loss of ambulation in late teenage or late mid-life years. There is currently no treatment for this condition. In this BMD proof-of-principle clinical trial, a potent myostatin antagonist, follistatin (FS), was used to inhibit the myostatin pathway. Extensive preclinical studies, using adeno-associated virus (AAV) to deliver follistatin, demonstrated an increase in strength. For this trial, we used the alternatively spliced FS344 to avoid potential binding to off target sites. AAV1.CMV.FS344 was delivered to six BMD patients by direct bilateral intramuscular quadriceps injections. Cohort 1 included three subjects receiving 3 × 10(11) vg/kg/leg. The distance walked on the 6MWT was the primary outcome measure. Patients 01 and 02 improved 58 meters (m) and 125 m, respectively. Patient 03 showed no change. In Cohort 2, Patients 05 and 06 received 6 × 10(11) vg/kg/leg with improved 6MWT by 108 m and 29 m, whereas, Patient 04 showed no improvement. No adverse effects were encountered. Histological changes corroborated benefit showing reduced endomysial fibrosis, reduced central nucleation, more normal fiber size distribution with muscle hypertrophy, especially at high dose. The results are encouraging for treatment of dystrophin-deficient muscle diseases.


Journal of Translational Medicine | 2007

A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy

Louise R. Rodino-Klapac; Paul M. L. Janssen; Chrystal L Montgomery; Brian D. Coley; Louis G. Chicoine; K. Reed Clark

BackgroundDuchenne muscular dystrophy (DMD) is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1) A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2) an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3) the use of viral doses to accommodate current limitations imposed by vector production methods; 4) and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation.MethodsThe capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a) that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL). The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD.ResultsRegional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month), 91.3 ± 3.1 (2 months), and 89.6 ± 1.6% (3 months). rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month), 78.9 ± 7.4 (2 months), and 81.2 ± 6.2% (3 months) transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month), 2.1 ± 0.8 (2 months), and 2.1 ± 0.7% (3 months)] by vascular delivery. Micro-dystrophin delivered by rAAV8 and rAAV6 through the femoral artery significantly improved tetanic force and protected against eccentric contraction. Mouse studies translated to the hindlimb of cynamologous macaques using a similar vascular delivery paradigm. rAAV8 carrying eGFP in doses proportional to the mouse (5 × 1012 vg/kg in mouse vs 2 × 1012 vg/kg in monkey) demonstrated widespread gene expression [medial gastrocnemius – 63.8 ± 4.9%, lateral gastrocnemius – 66.0 ± 4.5%, EDL – 80.2 ± 3.1%, soleus – 86.4 ± 1.9%, TA – 72.2 ± 4.0%.ConclusionThese studies demonstrate regional vascular gene delivery with AAV serotype(s) in mouse and non-human primate at doses, pressures and volumes applicable for clinical trials in children with DMD.


Expert Opinion on Emerging Drugs | 2012

Emerging drugs for Duchenne muscular dystrophy

Vinod Malik; Louise R. Rodino-Klapac

Introduction: Duchenne muscular dystrophy (DMD) is the most common, severe childhood form of muscular dystrophy. Treatment is limited to glucocorticoids that have the benefit of prolonging ambulation by approximately 2 years and preventing scoliosis. Finding a more satisfactory treatment should focus on maintaining long-term efficacy with a minimal side effect profile. Areas covered: Authors discuss different therapeutic strategies that have been used in pre-clinical and clinical settings. Expert opinion: Multiple treatment approaches have emerged. Most attractive are molecular-based therapies that can express the missing dystrophin protein (exon skipping or mutation suppression) or a surrogate gene product (utrophin). Other approaches include increasing the strength of muscles (myostatin inhibitors), reducing muscle fibrosis and decreasing oxidative stress. Additional targets include inhibiting NF-κB to reduce inflammation or promoting skeletal muscle blood flow and muscle contractility using phosphodiesterase inhibitors or nitric oxide (NO) donors. The potential for each of these treatment strategies to enter clinical trials is a central theme of discussion. The review emphasizes that the goal of treatment should be to find a product at least as good as glucocorticoids with a lower side effect profile or with a significant glucocorticoid sparing effect.


American Journal of Physiology-cell Physiology | 2009

Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice

Paul T. Martin; Rui Xu; Louise R. Rodino-Klapac; Elaine Oglesbay; Marybeth Camboni; Chrystal L. Montgomery; Kim Shontz; Louis G. Chicoine; K. Reed Clark; Zarife Sahenk; Paul M. L. Janssen

The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.

Collaboration


Dive into the Louise R. Rodino-Klapac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle A. Griffin

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Lowes

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lindsay Alfano

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Reed Clark

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Flanigan

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sarah Lewis

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge