Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise V. Wain is active.

Publication


Featured researches published by Louise V. Wain.


PLOS ONE | 2011

A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample

Ma’en Obeidat; Louise V. Wain; Nick Shrine; Noor Kalsheker; María Soler Artigas; Emmanouela Repapi; Paul R. Burton; Toby Johnson; Adaikalavan Ramasamy; Jing Hua Zhao; Guangju Zhai; Jennifer E. Huffman; Veronique Vitart; Eva Albrecht; Wilmar Igl; Anna-Liisa Hartikainen; Anneli Pouta; Gemma Cadby; Jennie Hui; Lyle J. Palmer; David Hadley; Wendy L. McArdle; Alicja R. Rudnicka; Inês Barroso; Ruth J. F. Loos; Nicholas J. Wareham; Massimo Mangino; Nicole Soranzo; Tim D. Spector; Sven Gläser

Rationale Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). Objectives To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. Methods We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/−10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. Results The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV1 or FEV1/FVC traits using a carefully defined significance threshold of 1.3×10−5. The most significant loci associated with FEV1 include SNPs tagging MACROD2 (P = 6.81×10−5), CNTN5 (P = 4.37×10−4), and TRPV4 (P = 1.58×10−3). Among ever-smokers, SERPINA1 showed the most significant association with FEV1 (P = 8.41×10−5), followed by PDE4D (P = 1.22×10−4). The strongest association with FEV1/FVC ratio was observed with ABCC1 (P = 4.38×10−4), and ESR1 (P = 5.42×10−4) among ever-smokers. Conclusions Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV1 among smokers in the general population.


The Lancet | 2009

Genomic copy number variation, human health, and disease.

Louise V. Wain; John A.L. Armour; Martin D. Tobin

Despite the long recognised effects of chromosomal structural abnormalities and completion of the Human Genome Project, much of the structural variation in the genome has gone unrecognised until recently. Deletions and duplications of DNA strands of between a few hundred bp and several million bp-collectively referred to as copy number variants-are now known to be widespread. Since 2007, rigorous and adequately powered genome-wide association studies based on single nucleotide polymorphisms have yielded replicated associations to several common diseases. Some copy number variants explain rare, previously uncharacterised disorders, and they are now expected to explain some of the genetic contribution to common diseases. We review efforts to map copy number variants and discuss present and future prospects for assessment of their relation to human health and disease.


The Lancet Respiratory Medicine | 2015

Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.

Louise V. Wain; Nick Shrine; Suzanne Miller; Victoria E. Jackson; Ioanna Ntalla; María Soler Artigas; Charlotte K. Billington; Abdul Kader Kheirallah; Richard J. Allen; James P. Cook; Kelly Probert; Ma'en Obeidat; Yohan Bossé; Ke Hao; Dirkje S. Postma; Peter D. Paré; Adaikalavan Ramasamy; Reedik Mägi; Evelin Mihailov; Eva Reinmaa; Erik Melén; Jared O'Connell; Eleni Frangou; Olivier Delaneau; Colin Freeman; Desislava Petkova; Mark I. McCarthy; Ian Sayers; Panos Deloukas; Richard Hubbard

Summary Background Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health. Methods We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10−8. Findings UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50 008 unique samples: 10 002 individuals with low FEV1, 10 000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2·29 × 10−16) and between individuals with and without doctor-diagnosed asthma (p=6·06 × 10−11). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5′ end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue. Interpretation By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease. Funding Medical Research Council.


Thorax | 2012

Genome-wide association study to identify genetic determinants of severe asthma

Y.I. Wan; Nick Shrine; M. Soler Artigas; Louise V. Wain; John Blakey; Miriam F. Moffatt; Andrew Bush; K. F. Chung; William Cookson; David P. Strachan; Liam Heaney; B.A.H. Al-Momani; Adel Mansur; S. Manney; Neil C. Thomson; Rekha Chaudhuri; Christopher E. Brightling; Mona Bafadhel; Amisha Singapuri; Robert Niven; Angela Simpson; John W. Holloway; Peter H. Howarth; Jennie Hui; Arthur W. Musk; Alan James; Matthew A. Brown; Svetlana Baltic; Manuel A. Ferreira; Philip J. Thompson

Background The genetic basis for developing asthma has been extensively studied. However, association studies to date have mostly focused on mild to moderate disease and genetic risk factors for severe asthma remain unclear. Objective To identify common genetic variants affecting susceptibility to severe asthma. Methods A genome-wide association study was undertaken in 933 European ancestry individuals with severe asthma based on Global Initiative for Asthma (GINA) criteria 3 or above and 3346 clean controls. After standard quality control measures, the association of 480 889 genotyped single nucleotide polymorphisms (SNPs) was tested. To improve the resolution of the association signals identified, non-genotyped SNPs were imputed in these regions using a dense reference panel of SNP genotypes from the 1000 Genomes Project. Then replication of SNPs of interest was undertaken in a further 231 cases and 1345 controls and a meta-analysis was performed to combine the results across studies. Results An association was confirmed in subjects with severe asthma of loci previously identified for association with mild to moderate asthma. The strongest evidence was seen for the ORMDL3/GSDMB locus on chromosome 17q12-21 (rs4794820, p=1.03×10(−8) following meta-analysis) meeting genome-wide significance. Strong evidence was also found for the IL1RL1/IL18R1 locus on 2q12 (rs9807989, p=5.59×10(−8) following meta-analysis) just below this threshold. No novel loci for susceptibility to severe asthma met strict criteria for genome-wide significance. Conclusions The largest genome-wide association study of severe asthma to date was carried out and strong evidence found for the association of two previously identified asthma susceptibility loci in patients with severe disease. A number of novel regions with suggestive evidence were also identified warranting further study.


American Journal of Respiratory and Critical Care Medicine | 2011

Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function

M. Soler Artigas; Louise V. Wain; Emmanouela Repapi; Ma'en Obeidat; Ian Sayers; Paul R. Burton; Toby Johnson; Jiao Zhao; Eva Albrecht; Anna F. Dominiczak; Sm Kerr; Blair H. Smith; Gemma Cadby; Jennie Hui; Lyle J. Palmer; Aroon D. Hingorani; Sg Wannamethee; P H Whincup; S Ebrahim; George Davey Smith; Inês Barroso; Remco Loos; Nicholas J. Wareham; C Cooper; E Dennison; Seif O. Shaheen; Jimmy Z. Liu; Jonathan Marchini; Santosh Dahgam; Åsa Torinsson Naluai

RATIONALE Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied. OBJECTIVES To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP. METHODS By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD. MEASUREMENTS AND MAIN RESULTS Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10-12 risk alleles was associated with a reduction in FEV1 (β = -72.21 ml, P = 3.90 × 10(-4)) and FEV1/FVC (β = -1.53%, P = 6.35 × 10(-6)), and with COPD (odds ratio = 1.63, P = 1.46 × 10(-5)). CONCLUSIONS Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.


Nature Genetics | 2017

Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk.

Helen R. Warren; Evangelos Evangelou; Claudia P. Cabrera; He Gao; Meixia Ren; Borbala Mifsud; Ioanna Ntalla; Praveen Surendran; Chunyu Liu; James P. Cook; Aldi T. Kraja; Fotios Drenos; Marie Loh; Niek Verweij; Jonathan Marten; Ibrahim Karaman; Marcelo Segura Lepe; Paul F. O'Reilly; Joanne Knight; Harold Snieder; Norihiro Kato; Jiang He; E. Shyong Tai; M. Abdullah Said; David J. Porteous; Maris Alver; Neil Poulter; Martin Farrall; Ron T. Gansevoort; Sandosh Padmanabhan

Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure–raising genetic variants on future cardiovascular disease risk.


Circulation-cardiovascular Genetics | 2012

Common genetic variation in the 3β-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk the aortagen consortium

Gary F. Mitchell; Germaine C. Verwoert; Kirill V. Tarasov; Aaron Isaacs; Albert V. Smith; Yasmin; Ernst Rietzschel; Toshiko Tanaka; Yongmei Liu; Afshin Parsa; Samer S. Najjar; Kevin M. O'Shaughnessy; Sigurdur Sigurdsson; Marc L. De Buyzere; Martin G. Larson; Mark P.S. Sie; Jeanette S. Andrews; Wendy S. Post; Francesco Mattace-Raso; Carmel M. McEniery; Gudny Eiriksdottir; Patrick Segers; Marie Josee E. van Rijn; Timothy D. Howard; Patrick F. McArdle; Abbas Dehghan; Elizabeth S. Jewell; Stephen J. Newhouse; Sofie Bekaert; Naomi M. Hamburg

Background— Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results— We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20 634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency=0.42, &bgr;=−0.075±0.012 SD/allele, P=2.8×10−10; replication &bgr;=−0.086±0.020 SD/allele, P=1.4×10−6). Combined results for rs7152623 from 11 cohorts gave &bgr;=−0.076±0.010 SD/allele, P=3.1×10−15. The association persisted when adjusted for mean arterial pressure (&bgr;=−0.060±0.009 SD/allele, P=1.0×10−11). Results were consistent in younger (<55 years, 6 cohorts, n=13 914, &bgr;=−0.081±0.014 SD/allele, P=2.3×10−9) and older (9 cohorts, n=12 026, &bgr;=−0.061±0.014 SD/allele, P=9.4×10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio=1.05; confidence interval=1.02–1.08; P=0.0013) and heart failure (hazard ratio=1.10, CI=1.03–1.16, P=0.004). Conclusions— Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor 1 or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events.


PLOS ONE | 2009

Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies

Ilja M. Nolte; Chris Wallace; Stephen Newhouse; Daryl Waggott; Jingyuan Fu; Nicole Soranzo; Rhian Gwilliam; Panos Deloukas; Irina Savelieva; Dongling Zheng; Chrysoula Dalageorgou; Martin Farrall; Nilesh J. Samani; John M. C. Connell; Morris J. Brown; Anna F. Dominiczak; Mark Lathrop; Eleftheria Zeggini; Louise V. Wain; Christopher Newton-Cheh; Mark Eijgelsheim; Kenneth Rice; Paul I. W. de Bakker; Arne Pfeufer; Serena Sanna; Dan E. Arking; Folkert W. Asselbergs; Tim D. Spector; Nicholas D. Carter; Steve Jeffery

To identify loci affecting the electrocardiographic QT interval, a measure of cardiac repolarisation associated with risk of ventricular arrhythmias and sudden cardiac death, we conducted a meta-analysis of three genome-wide association studies (GWAS) including 3,558 subjects from the TwinsUK and BRIGHT cohorts in the UK and the DCCT/EDIC cohort from North America. Five loci were significantly associated with QT interval at P<1×10−6. To validate these findings we performed an in silico comparison with data from two QT consortia: QTSCD (n = 15,842) and QTGEN (n = 13,685). Analysis confirmed the association between common variants near NOS1AP (P = 1.4×10−83) and the phospholamban (PLN) gene (P = 1.9×10−29). The most associated SNP near NOS1AP (rs12143842) explains 0.82% variance; the SNP near PLN (rs11153730) explains 0.74% variance of QT interval duration. We found no evidence for interaction between these two SNPs (P = 0.99). PLN is a key regulator of cardiac diastolic function and is involved in regulating intracellular calcium cycling, it has only recently been identified as a susceptibility locus for QT interval. These data offer further mechanistic insights into genetic influence on the QT interval which may predispose to life threatening arrhythmias and sudden cardiac death.


Nature Genetics | 2017

Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

Brian D. Hobbs; Kim de Jong; Maxime Lamontagne; Yohan Bossé; Nick Shrine; María Soler Artigas; Louise V. Wain; Ian P. Hall; Victoria E. Jackson; Annah B. Wyss; Stephanie J. London; Kari E. North; Nora Franceschini; David P. Strachan; Terri H. Beaty; John E. Hokanson; James D. Crapo; Peter J. Castaldi; Robert Chase; Traci M. Bartz; Susan R. Heckbert; Bruce M. Psaty; Sina A. Gharib; Pieter Zanen; Jan Willem J. Lammers; Matthijs Oudkerk; Harry J.M. Groen; Nicholas Locantore; Ruth Tal-Singer; Stephen I. Rennard

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10−6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.


Human Molecular Genetics | 2010

A large genome scan for rare CNVs in amyotrophic lateral sclerosis

Hylke M. Blauw; Ammar Al-Chalabi; Peter Andersen; Paul W.J. van Vught; Frank P. Diekstra; Michael A. van Es; Christiaan G.J. Saris; Ewout J.N. Groen; Wouter van Rheenen; Max Koppers; Ruben van 't Slot; Eric Strengman; Karol Estrada; Fernando Rivadeneira; Albert Hofman; André G. Uitterlinden; Lambertus A. Kiemeney; Sita H. Vermeulen; Anna Birve; Stefan Waibel; Thomas Meyer; Simon Cronin; Russell McLaughlin; Orla Hardiman; Peter C. Sapp; Martin D. Tobin; Louise V. Wain; Barbara Tomik; Agnieszka Slowik; Robin Lemmens

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.

Collaboration


Dive into the Louise V. Wain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian P. Hall

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Nick Shrine

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Ian Sayers

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennie Hui

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ma'en Obeidat

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adel Mansur

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge