Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lovisa E. Reinius is active.

Publication


Featured researches published by Lovisa E. Reinius.


Nature Biotechnology | 2013

Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Yun Liu; Martin J. Aryee; Leonid Padyukov; M. Daniele Fallin; Espen Hesselberg; Arni Runarsson; Lovisa E. Reinius; Nathalie Acevedo; Margaret A. Taub; Marcus Ronninger; Klementy Shchetynsky; Annika Scheynius; Juha Kere; Lars Alfredsson; Lars Klareskog; Tomas J. Ekström; Andrew P. Feinberg

Epigenetic mechanisms integrate genetic and environmental causes of disease, but comprehensive genome-wide analyses of epigenetic modifications have not yet demonstrated robust association with common diseases. Using Illumina HumanMethylation450 arrays on 354 anti-citrullinated protein antibody–associated rheumatoid arthritis cases and 337 controls, we identified two clusters within the major histocompatibility complex (MHC) region whose differential methylation potentially mediates genetic risk for rheumatoid arthritis. To reduce confounding factors that have hampered previous epigenome-wide studies, we corrected for cellular heterogeneity by estimating and adjusting for cell-type proportions in our blood-derived DNA samples and used mediation analysis to filter out associations likely to be a consequence of disease. Four CpGs also showed an association between genotype and variance of methylation. The associations for both clusters replicated at least one CpG (P < 0.01), with the rest showing suggestive association, in monocyte cell fractions in an independent cohort of 12 cases and 12 controls. Thus, DNA methylation is a potential mediator of genetic risk.


PLOS ONE | 2012

Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility

Lovisa E. Reinius; Nathalie Acevedo; Maaike Joerink; Göran Pershagen; Sven-Erik Dahlén; Dario Greco; Cilla Söderhäll; Annika Scheynius; Juha Kere

Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the “missing heritability”. The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered.


The Journal of Allergy and Clinical Immunology | 2013

The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma

Jon R. Konradsen; Anna James; Björn Nordlund; Lovisa E. Reinius; Cilla Söderhäll; Erik Melén; Åsa M. Wheelock; Karin C. Lødrup Carlsen; Marika Lidegran; Marri Verhoek; Rolf G. Boot; Barbro Dahlén; Sven Erik Dahlén; Gunilla Hedlin

BACKGROUND Problematic severe childhood asthma includes a subgroup of patients who are resistant to therapy. The specific mechanisms involved are unknown, and novel biomarkers are required to facilitate treatment and diagnosis of therapy-resistant asthma. The chitinase-like protein YKL-40 has been related to asthma and airway remodeling. OBJECTIVES To compare serum YKL-40 levels in children with severe, therapy-resistant asthma (n = 34), children with controlled persistent asthma (n = 39), and healthy controls (n = 27), and to investigate correlations with biomarkers of inflammation and airway remodeling. METHODS The study protocol included questionnaires, measurement of exhaled nitric oxide in exhaled air, blood sampling for inflammatory biomarkers, and high-resolution computed tomography of the lungs to identify bronchial wall thickening (therapy-resistant only). Serum YKL-40 levels were measured by ELISA, and all asthmatic children were genotyped for a CHI3L1 promoter single nucleotide polymorphism (rs4950928). RESULTS Serum YKL-40 levels were significantly higher in children with therapy-resistant asthma than in healthy children (19.2 ng/mL vs 13.8 ng/mL, P = .03). Among children with severe, therapy-resistant asthma, YKL-40 levels correlated with fraction of exhaled nitric oxide in exhaled air (r = 0.48, P = .004), blood neutrophils (r = 0.63, P < .001), and bronchial wall thickening on high-resolution computed tomography (r = 0.45, P = .01). Following adjustment for CHI3L1 genotype, significantly greater levels of YKL-40 were found in children with therapy-resistant asthma than in children with controlled asthma. CONCLUSIONS YKL-40 levels are increased in children with severe, therapy-resistant asthma compared to healthy children, and also compared to children with controlled asthma following correction for genotype.


Allergy | 2012

DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm

Gisela G.G. Slaats; Lovisa E. Reinius; Johan Alm; Juha Kere; Annika Scheynius; Maaike Joerink

Epigenetic regulation has been suggested to be a link between environmental intrauterine exposures and development of asthma and allergy. The placenta is an essential part of the intrauterine environment. We have previously found the innate immune receptor CD14 to be differentially expressed on the mRNA level in placentas in relation to lifestyle and parental allergen sensitization. We here hypothesized that the promoter region of CD14 may be subject to differential DNA methylation and therefore a link between intrauterine exposure and mRNA expression.


Human Molecular Genetics | 2015

Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus

Nathalie Acevedo; Lovisa E. Reinius; Dario Greco; Anna Gref; Christina Orsmark-Pietras; Helena Persson; Göran Pershagen; Gunilla Hedlin; Erik Melén; Annika Scheynius; Juha Kere; Cilla Söderhäll

Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5′ UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8+ T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression.


PLOS ONE | 2013

DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors

Lovisa E. Reinius; Anna Gref; Annika Sääf; Nathalie Acevedo; Maaike Joerink; Maciej Kupczyk; Mauro D'Amato; Anna Bergström; Erik Melén; Annika Scheynius; Sven-Erik Dahlén; Göran Pershagen; Cilla Söderhäll; Juha Kere

Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.


American Journal of Respiratory and Critical Care Medicine | 2016

Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease

Anna James; Lovisa E. Reinius; Marri Verhoek; Anna Gomes; Maciej Kupczyk; Ulf Hammar; Junya Ono; Shoichiro Ohta; Kenji Izuhara; Elisabeth H. Bel; Juha Kere; Cilla Söderhäll; Barbro Dahlén; Rolf G. Boot; Sven-Erik Dahlén

RATIONALE Serum chitinases may be novel biomarkers of airway inflammation and remodeling, but less is known about factors regulating their levels. OBJECTIVES To examine serum chitotriosidase activity and YKL-40 levels in patients with asthma and chronic obstructive pulmonary disease (COPD) and evaluate clinically relevant factors that may affect chitinase levels, including genetic variability, corticosteroid treatment, disease exacerbations, and allergen exposure. METHODS Serum chitotriosidase (CHIT1) activity and YKL-40 (CHI3L1) levels, as well as the CHIT1 rs3831317 and CHI3L1 rs4950928 genotypes, were examined in subsets of patients with mild to moderate asthma (n = 76), severe asthma (n = 93), and COPD (n = 64) taking part in the European multicenter BIOAIR (Longitudinal Assessment of Clinical Course and Biomarkers in Severe Chronic Airway Disease) study. Blood was obtained at baseline, before and after a 2-week oral steroid intervention, up to six times during a 1-year period, and during exacerbations. Baseline chitinase levels were also measured in 72 healthy control subjects. The effect of allergen inhalation on blood and sputum YKL-40 levels was measured in two separate groups of patients with mild atopic asthma; one group underwent repeated low-dose allergen challenge (n = 15), and the other underwent high-dose allergen challenge (n = 16). MEASUREMENTS AND MAIN RESULTS Serum chitotriosidase and YKL-40 were significantly elevated in patients with asthma and those with COPD compared with healthy control subjects. Genotype and age strongly affected both YKL-40 and chitotriosidase activity, but associations with disease remained following adjustment for these factors. Correlations were observed with lung function but not with other biomarkers, including exhaled nitric oxide, blood eosinophils, periostin, and IgE. Generally, acute exacerbations, allergen-induced airway obstruction, and corticosteroid treatment did not affect circulating chitinase levels. CONCLUSIONS YKL-40 and chitotriosidase are increased in asthma and more so in COPD. The data in the present study support these substances as being relatively steroid-insensitive, non-T-helper cell type 2-type biomarkers distinctly related to chronic inflammatory disease processes.


Epigenetics | 2014

Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7

Katariina Hannula-Jouppi; Mari Muurinen; Marita Lipsanen-Nyman; Lovisa E. Reinius; Sini Ezer; Dario Greco; Juha Kere

DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.


The Lancet Respiratory Medicine | 2018

DNA methylation in childhood asthma: an epigenome-wide meta-analysis

Cheng-Jian Xu; Cilla Söderhäll; Mariona Bustamante; Nour Baïz; Olena Gruzieva; Ulrike Gehring; Dan Mason; Leda Chatzi; Mikel Basterrechea; Sabrina Llop; Maties Torrent; Francesco Forastiere; Maria Pia Fantini; Karin C. Lødrup Carlsen; Tari Haahtela; Andréanne Morin; Marjan Kerkhof; Simon Kebede Merid; Bianca van Rijkom; Soesma A. Jankipersadsing; Marc Jan Bonder; Stephane Ballereau; Cornelis Vermeulen; Raúl Aguirre-Gamboa; Johan C. de Jongste; Henriette A. Smit; Ashish Kumar; Göran Pershagen; Stefano Guerra; Judith Garcia-Aymerich

BACKGROUND DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING EU and the Seventh Framework Programme (the MeDALL project).


Genome Medicine | 2016

High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis

David Gomez-Cabrero; Malin Almgren; Louise K. Sjöholm; Aase Haj Hensvold; Mikael V. Ringh; Rakel Tryggvadottir; Juha Kere; Annika Scheynius; Nathalie Acevedo; Lovisa E. Reinius; Margaret A. Taub; Carolina Montano; Martin J. Aryee; Jason I. Feinberg; Andrew P. Feinberg; Jesper Tegnér; Lars Klareskog; Anca Irinel Catrina; Tomas J. Ekström

BackgroundTwin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research.MethodsWe implemented a robust statistical methodology aimed at investigating a small number of samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of sorted cells and used computational algorithms to resolve the relative contributions of different cell types and used them as covariates.ResultsTo identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally, the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to ACPA-positivity with clinical RA.ConclusionsOur biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may prove generally useful in twin studies.

Collaboration


Dive into the Lovisa E. Reinius's collaboration.

Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Greco

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbro Dahlén

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge