Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lovisa Lind is active.

Publication


Featured researches published by Lovisa Lind.


Biological Reviews | 2014

The role of ice dynamics in shaping vegetation in flowing waters

Lovisa Lind; Christer Nilsson; Lina E. Polvi; Christine Weber

Ice dynamics is an important factor affecting vegetation in high‐altitude and high‐latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze‐up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow‐flowing reaches develop a surface‐ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects – mostly cell damage – happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams and rivers may mitigate some effects of anticipated climate change on ice and vegetation dynamics by, for example, slowing down flows and increasing water depth, thus reducing the potential for massive formation of underwater ice.


Ecosystems | 2013

Boreal Riparian Vegetation Under Climate Change

Christer Nilsson; Roland Jansson; Lenka Kuglerová; Lovisa Lind; Lotta Ström

Riparian zones in boreal areas such as humid landscapes on minerogenic soils are characterized by diverse, productive, and dynamic vegetation which will rapidly react to climate change. Climate-change models predict that in most parts of the boreal region these zones will be affected by various combinations of increased temperature, less seasonal variation in runoff, increased average discharge, changes in groundwater supply, and a more dynamic ice regime. Increasing temperatures will favor invasion of exotic species whereas species losses are likely to be minor. The hydrologic changes will cause a narrowing of the riparian zone and, therefore, locally reduce species richness whereas effects on primary production are more difficult to predict. More shifts between freezing and thawing during winter will lead to increased dynamics of ice formation and ice disturbance, potentially fostering a more dynamic and species-rich riparian vegetation. Restoration measures that increase water retention and shade, and that reduce habitats for exotic plant species adjacent to rivers can be applied especially in streams and rivers that have been channelized or deprived of their riparian forest to reduce the effects of climate change on riparian ecosystems.


Ecological Applications | 2015

Time for recovery of riparian plants in restored northern Swedish streams: a chronosequence study

Eliza Maher Hasselquist; Christer Nilsson; Joakim Hjältén; Dolly Jørgensen; Lovisa Lind; Lina E. Polvi

A lack of ecological responses in stream restoration projects has been prevalent throughout recent literature with many studies reporting insufficient time for recovery. We assessed the relative importance of time, site variables, and landscape setting for understanding how plant species richness and understory productivity recover over time in riparian zones of northern Swedish streams. We used a space-for-time substitution consisting of 13 stream reaches restored 5-25 years ago, as well as five unrestored channelized reference reaches. We inventoried the riparian zone for all vascular plant species along 60-m study reaches and quantified cover and biomass in plots. We found that while species richness increased with time, understory biomass decreased. Forbs made up the majority of the species added, while the biomass of graminoids decreased the most over time, suggesting that the reduced dominance of graminoids favored less productive forbs. Species richness and density patterns could be attributed to dispersal limitation, with anemochorous species being more associated with time after restoration than hydrochorous, zoochorous, or vegetatively reproducing species. Using multiple linear regression, we found that time along with riparian slope and riparian buffer width (e.g., distance to logging activities) explained the most variability in species richness, but that variability in total understory biomass was explained primarily by time. The plant community composition of restored reaches differed from that of channelized references, but the difference did not increase over time. Rather, different time categories had different successional trajectories that seemed to converge on a unique climax community for that time period. Given our results, timelines for achieving species richness objectives should be extended to 25 years or longer if recovery is defined as a saturation of the accumulation of species over time. Other recommendations include making riparian slopes as gentle as possible given the landscape context and expanding riparian buffer width for restoration to have as much impact as possible.


BioScience | 2013

Winter Disturbances and Riverine Fish in Temperate and Cold Regions

Christine Weber; Christer Nilsson; Lovisa Lind; Knut Alfredsen; Lina E. Polvi

Winter is a critical period for aquatic organisms; however, little is known about the ecological significance of its extreme events. Here, we link winter ecology and disturbance research by synthesizing the impacts of extreme winter conditions on riverine habitats and fish assemblages in temperate and cold regions. We characterize winter disturbances by their temporal pattern and abiotic effects, explore how various drivers influence fish, and discuss human alterations of winter disturbances and future research needs. We conclude that (a) more data on winter dynamics are needed to identify extreme events, (b) winter ecology and disturbance research should test assumptions of practical relevance for both disciplines, (c) hydraulic and population models should incorporate winter- and disturbance-specific aspects, and (d) management for sustainability requires that river managers work proactively by including anticipated future alterations in the design of restoration and conservation activities.


Journal of Environmental Quality | 2014

The use of phytometers for evaluating restoration effects on riparian soil fertility.

Anna L. Dietrich; Lovisa Lind; Christer Nilsson; Roland Jansson

The ecological restoration of streams in Sweden has become increasingly important to counteract effects of past timber floating. In this study, we focused on the effect on riparian soil properties after returning coarse sediment (cobbles and boulders) to the channel and reconnecting riparian with in-stream habitats. Restoration increases habitat availability for riparian plants, but its effects on soil quality are unknown. We also analyzed whether the restoration effect differs with variation in climate and stream size. We used standardized plant species to measure the performance of a grass ( L.) and a forb ( L.) in soils sampled in the riparian zones of channelized and restored streams and rivers. Furthermore, we analyzed the mass fractions of carbon (C) and nitrogen (N) along with the proportions of the stable isotopes C and N in the soil, as well as its grain size composition. We found a positive effect of restoration on biomass of phytometers grown in riparian soils from small streams, indicating that restoration enhanced the soil properties favoring plant performance. We suggest that changed flooding with more frequent but less severe floods and slower flows, enhancing retention, could explain the observed patterns. This positive effect suggests that it may be advantageous to initiate restoration efforts in small streams, which make up the highest proportion of the stream network in a catchment. Restoration responses in headwater streams may then be transmitted downstream to facilitate recovery of restored larger rivers. If the larger rivers were restored first, a slower reaction would be expected.


Journal of Ecology | 2015

Vegetation patterns in small boreal streams relate to ice and winter floods

Lovisa Lind; Christer Nilsson

In-stream and riparian vegetation are species rich, productive and dynamic. Their patterns insmall boreal streams are largely driven by seasonal flow regimes. Traditionally, flow-related processes ...


Ecology and Evolution | 2014

Effects of ice and floods on vegetation in streams in cold regions: implications for climate change

Lovisa Lind; Christer Nilsson; Christine Weber

Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.


Ecohydrology | 2015

Riparian and in‐stream restoration of boreal streams and rivers: success or failure?

Christer Nilsson; Lina E. Polvi; Johanna Gardeström; Eliza Maher Hasselquist; Lovisa Lind; Judith M. Sarneel


Freshwater Biology | 2015

Extreme events in streams and rivers in arctic and subarctic regions in an uncertain future

Christer Nilsson; Lina E. Polvi; Lovisa Lind


Ecosystems | 2017

How Do Biota Respond to Additional Physical Restoration of Restored Streams

Christer Nilsson; Judith M. Sarneel; Daniel Palm; Johanna Gardeström; Francesca Pilotto; Lina E. Polvi; Lovisa Lind; Daniel Holmqvist; Hans Lundqvist

Collaboration


Dive into the Lovisa Lind's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Weber

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Alfredsen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lenka Kuglerová

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge