Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lovisa Ringstad is active.

Publication


Featured researches published by Lovisa Ringstad.


Frontiers in Cellular and Infection Microbiology | 2016

Antimicrobial Peptides: An Emerging Category of Therapeutic Agents

Margit Mahlapuu; Joakim Håkansson; Lovisa Ringstad; Camilla Björn

Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.


PLOS ONE | 2009

End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing.

Mukesh Pasupuleti; Artur Schmidtchen; Anna Chalupka; Lovisa Ringstad; Martin Malmsten

Background Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. Methodology and Principal Findings A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4–7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. Conclusions/Significance End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications.


Biochimica et Biophysica Acta | 2011

Membrane selectivity by W-tagging of antimicrobial peptides.

Artur Schmidtchen; Lovisa Ringstad; Gopinath Kasetty; Hiroyasu Mizuno; Mark W. Rutland; Martin Malmsten

A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the presence of cholesterol. As exemplified for GRR10W4N (GRRPRPRPRPWWWW-NH(2)), potent liposome rupture occurs for anionic lipid systems (dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) and Escherichia coli lipid extract) while that of zwitterionic dioleoylphosphatidylcholine (DOPC)/cholesterol is largely absent under the conditions investigated. This pronounced membrane selectivity is due to both a lower peptide binding to the zwitterionic membranes (z≈-8-10mV) than to the anionic ones (z≈-35-40mV), and a lower degree of membrane incorporation in the zwitterionic membranes, particularly in the presence of cholesterol. Replacing cholesterol with ergosterol, thus mimicking fungal membranes, results in an increased sensitivity for peptide-induced lysis, in analogy to the antifungal properties of such peptides. Finally, the generality of the high membrane selectivity for other peptides of this type is demonstrated.


Langmuir | 2016

Lipid-based liquid crystals as carriers for antimicrobial peptides : Phase behavior and antimicrobial effect

Lukas Boge; Helena Bysell; Lovisa Ringstad; David Wennman; Anita Umerska; Viviane Cassisa; Jonny Eriksson; Marie-Laure Joly-Guillou; Katarina Edwards; Martin Andersson

The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded with peptide LL-37 displayed a loss in its broad-spectrum bactericidal properties. AMP-loaded hexosomes showed a reduction in antimicrobial activity.


Analytical and Bioanalytical Chemistry | 2010

Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation.

Britta Lindholm-Sethson; Josefina Nyström; Martin Malmsten; Lovisa Ringstad; Andrew Nelson; Paul Geladi

Electrochemical impedance spectroscopy plays an important role in biosensor science thanks to the possibility of finding specific information from processes with different kinetics at a chosen electrode potential in one experiment. In this paper we briefly discuss label-free impedimetric biosensors described in the literature. A novel method for neutral interpretation of impedance data is presented that includes complex number chemometrics. Three examples are given based on impedance measurements on synthetic biomembranes, in this case a lipid monolayer deposited on a mercury electrode. The interaction of various compounds with the monomolecular lipid layer is illustrated with the following: (1) different concentrations of magainin (Geladi et al. in Proc. Int. Fed. Med. Biomed. Eng. 9:219–220, 2005); (2) different derivatives of gramicidin A (Lindholm-Sethson et al. in Langmuir 24:5029–5032, 2007), and (3) an antimicrobial peptide (Ringstad et al. in Langmuir 24:208–216, 2008).


International Journal of Pharmaceutics | 2016

Lipid-based nanoformulations for peptide delivery

Nada Matougui; Lukas Boge; Anne-Claire Groo; Anita-Monika Umerska; Lovisa Ringstad; Helena Bysell; Patrick Saulnier

Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described.


Biosensors and Bioelectronics | 2009

Nanotechnologic biosensor ellipsometry and biomarker pattern analysis in the evaluation of atherosclerotic risk profile.

G. Siegel; M. Rodriguez; F. Sauer; C. Abletshauser; C. de Mey; K. Schötz; Lovisa Ringstad; Martin Malmsten; P. Schäfer

A proteoheparan sulfate coated, hydrophobic silica surface serves as lipoprotein receptor at which the Ca(2+)-driven arteriosclerotic nanoplaque formation can be pursued by laser-based ellipsometry. Any lipoprotein from human blood can be very sensitively tested for its atherogenic properties. From the same blood sample, it is possible to determine the concentration and activity of a series of interacting biomarker molecules which, through a pattern analysis, allow to assess the state of health with respect to cardiovascular diseases. These two interlinked and complementary biosensors make a prospective cardio-cerebro-vascular risk stratification feasible, especially the sequelae of an underlying arteriosclerotic disease. Based on these diagnostic tools, an optimized therapy decision for the patient can be taken and the necessary preventive measures for the still healthy person.


International Journal of Pharmaceutics | 2017

Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability

Lukas Boge; Anita Umerska; Nada Matougui; Helena Bysell; Lovisa Ringstad; Mina Davoudi; Jonny Eriksson; Katarina Edwards; Martin Andersson

Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements. AMPs impact on the cubosome structure was investigated using small angle x-ray scattering and cryogenic transmission electron microscopy. The antimicrobial effect of the AMP loaded cubosomes was studied in vitro by minimum inhibitory concentration and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay. Different association efficacy onto the cubosomes was observed among the AMPs, with LL-37 showing greatest association (>60%). AP114 loaded cubosomes displayed a preserved antimicrobial effect, whereas for LL-37 the broad spectrum bacterial killing was reduced to only comprise Gram-negative bacteria. Interestingly, DPK-060 loaded cubosomes showed a slight enhanced effect against S. aureus and E. coli strains. Moreover, the cubosomes were found to protect LL-37 from proteolytic degradation, resulting in a significantly better bactericidal effect after being subjected to elastase, compared to unformulated peptide.


Skin Research and Technology | 2016

Tactile friction of topical formulations

Lisa Skedung; I. Buraczewska-Norin; N. Dawood; Mark W. Rutland; Lovisa Ringstad

The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations.


Lipids in Health and Disease | 2006

A new water-based topical carrier with polar skin-lipids

Mats Silvander; Lovisa Ringstad; Ruby Ghadially; Thomas Sköld

A new water-based topical formulation is presented that aims at providing good penetration properties for both lipophilic and hydrophilic drugs with as small a disturbance of the skin barrier function as possible. The formulation contains dispersed lipids in a ratio resembling that of human skin. The capacity to deliver is addressed in this first study while the mild effect on skin will be presented later. Three variations of the lipid formulation were investigated by use of pigskin in vitro diffusion cell. The hydrophilic 5(6)-carboxyfluorescein (CF) and the lipophilic acridine orange 10-nonyl bromide (AO) were used as model drug substances. The results showed that the delivery properties of the new formulation exceeded that of the references (vaseline and xanthan gum gel). The effect was largest for lipophilic AO where all lipid matrix formulations were superior in amount detected in the skin. The results for the hydrophilic CF were also promising. Especially efficient was the lipid formulation containing the non-ionic adjuvants tetra ethylene glycol monododecyl ether and polyoxyethylene 23 dodecyl ether. The additional in vivo study suggests that the used in vitro model has qualitative bearing on relevant in vivo situations.

Collaboration


Dive into the Lovisa Ringstad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Boge

Research Institutes of Sweden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Andersson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nada Matougui

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge