Lovisa Wennerström
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lovisa Wennerström.
Trends in Ecology and Evolution | 2015
Aaron B. A. Shafer; Jochen B. W. Wolf; Paulo C. Alves; Linnea Bergström; Michael William Bruford; Ioana Onut Brännström; Guy Colling; Love Dalén; Luc De Meester; Robert Ekblom; Katie D. Fawcett; Simone Fior; Mehrdad Hajibabaei; Jason Hill; A. Rus Hoezel; Jacob Höglund; Evelyn L. Jensen; Johannes Krause; Torsten Nygaard Kristensen; Michael Kruetzen; John K. McKay; Anita J. Norman; Rob Ogden; E. Martin Österling; N. Joop Ouborg; John Piccolo; Danijela Popović; Craig R. Primmer; Floyd A. Reed; Marie Roumet
The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution. This generates a gap between basic research and applicable solutions for conservation managers faced with multifaceted problems. Before the real-world conservation potential of genomic research can be realized, we suggest that current infrastructures need to be modified, methods must mature, analytical pipelines need to be developed, and successful case studies must be disseminated to practitioners.
Biodiversity and Conservation | 2013
Lovisa Wennerström; Linda Laikre; Nils Ryman; Fred M. Utter; Nurul Izza Ab Ghani; Carl André; Jacquelin DeFaveri; Daniel J.A. Johansson; Lena Kautsky; Juha Merilä; Natalia Mikhailova; Ricardo T. Pereyra; Annica Sandström; Amber G. F. Teacher; Roman Wenne; Anti Vasemägi; Małgorzata Zbawicka; Kerstin Johannesson; Craig R. Primmer
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.
AMBIO: A Journal of the Human Environment | 2016
Linda Laikre; Carina Lundmark; Eeva Jansson; Lovisa Wennerström; Mari Edman; Annica Sandström
Genetic diversity is needed for species’ adaptation to changing selective pressures and is particularly important in regions with rapid environmental change such as the Baltic Sea. Conservation measures should consider maintaining large gene pools to maximize species’ adaptive potential for long-term survival. In this study, we explored concerns regarding genetic variation in international and national policies that governs biodiversity and evaluated if and how such policy is put into practice in management plans governing Baltic Sea Marine Protected Areas (MPAs) in Sweden, Finland, Estonia, and Germany. We performed qualitative and quantitative textual analysis of 240 documents and found that agreed international and national policies on genetic biodiversity are not reflected in management plans for Baltic Sea MPAs. Management plans in all countries are largely void of goals and strategies for genetic biodiversity, which can partly be explained by a general lack of conservation genetics in policies directed toward aquatic environments.
Marine Pollution Bulletin | 2015
Peter Guban; Lovisa Wennerström; Tina Elfwing; Brita Sundelin; Linda Laikre
The amphipod Monoporeia affinis plays an important role in the Baltic Sea ecosystem as prey and as detritivore. The species is monitored for contaminant effects, but almost nothing is known about its genetics in this region. A pilot screening for genetic variation at the mitochondrial COI gene was performed in 113 individuals collected at six sites in the northern Baltic. Three coastal sites were polluted by pulp mill effluents, PAHs, and trace metals, and two coastal reference sites were without obvious connection to pollution sources. An off-coastal reference site was also included. Contaminated sites showed lower levels of genetic diversity than the coastal reference ones although the difference was not statistically significant. Divergence patterns measured as ΦST showed no significant differentiation within reference and polluted groups, but there was significant genetic divergence between them. The off-coastal sample differed significantly from all coastal sites and also showed lower genetic variation.
Conservation Genetics | 2017
Anastasia Andersson; Eeva Jansson; Lovisa Wennerström; Fidel Chiriboga; Mariann Arnyasi; Matthew Kent; Nils Ryman; Linda Laikre
Intraspecific genetic variation can have similar effects as species diversity on ecosystem function; understanding such variation is important, particularly for ecological key species. The brown trout plays central roles in many northern freshwater ecosystems, and several cases of sympatric brown trout populations have been detected in freshwater lakes based on apparent morphological differences. In some rare cases, sympatric, genetically distinct populations lacking visible phenotypic differences have been detected based on genetic data alone. Detecting such “cryptic” sympatric populations without prior grouping of individuals based on phenotypic characteristics is more difficult statistically, though. The aim of the present study is to delineate the spatial connectivity of two cryptic, sympatric genetic clusters of brown trout discovered in two interconnected, tiny subarctic Swedish lakes. The structures were detected using allozyme markers, and have been monitored over time. Here, we confirm their existence for almost three decades and report that these cryptic, sympatric populations exhibit very different connectivity patterns to brown trout of nearby lakes. One of the clusters is relatively isolated while the other one shows high genetic similarity to downstream populations. There are indications of different spawning sites as reflected in genetic structuring among parr from different creeks. We used >3000 SNPs on a subsample and find that the SNPs largely confirm the allozyme pattern but give considerably lower FST values, and potentially indicate further structuring within populations. This type of complex genetic substructuring over microgeographical scales might be more common than anticipated and needs to be considered in conservation management.
Journal of Mammalogy | 2016
Lovisa Wennerström; Nils Ryman; Jean-Luc Tison; Anna Hasslow; Love Dalén; Linda Laikre
Aquatic Conservation-marine and Freshwater Ecosystems | 2017
Lovisa Wennerström; Eeva Jansson; Linda Laikre
Canadian Journal of Fisheries and Aquatic Sciences | 2017
Lovisa Wennerström; Jens Olsson; Nils Ryman; Linda Laikre
Archive | 2014
Lovisa Wennerström; Anna Hasslow; Jean-Luc Tison; Love Dalén; Linda Laikre; Nils Ryman
Archive | 2012
Anna Palmé; Lovisa Wennerström; Peter Guban; Nils Ryman; Linda Laikre