Lu-E Shi
Hangzhou Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lu-E Shi.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2014
Lu-E Shi; Zhen-Hua Li; Wei Zheng; Yi-Fan Zhao; Yong-Fang Jin; Zhen-Xing Tang
Bacterial contamination reduces the shelf-life of foods and presents serious risks to human health. Nanotechnology provides the opportunity for the development of new antibacterial agents. Nano-inorganic metal oxides have shown the potential to reduce bacterial contamination of foods. When the particle size of materials decreases from the micrometre to the nanometre range, nano-functional properties such as diffusivity, mechanical strength, chemical reactivity and biological properties are improved. Significantly, ZnO has been used in many applications with particular success. Many studies have shown that ZnO nanoparticles have enhanced antibacterial activity. This review discusses the main synthetic methods, antibacterial activity, antibacterial mechanisms and food applications of ZnO nanoparticles.
Brazilian Journal of Chemical Engineering | 2011
Li-Ming Zhao; Lu-E Shi; Zhi-Liang Zhang; Jian-Min Chen; Dong-Dong Shi; Jie Yang; Zhen-Xing Tang
Encapsulation and immobilization technology is important for the food processing and bioengineering industries. Chitosan is a natural polysaccharide prepared by the N - deacetylation of chitin. It has been widely used in food and bioengineering industries, including the encapsulation of active food ingredients, in enzyme immobilization, and as a carrier for controlled drug delivery, due to its significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, and polycationicity. In this work, chitosan nanoparticles and nanofibers used to encapsulate bioactive substances and immobilize enzymes were reviewed. Preparation of chitosan nanoparticles and nanofibers, including the work achieved in our group on chitosan nanoparticles for enzyme immobilization, were also introduced. Some problems encountered with nano - structured chitosan carriers for bioactive substance encapsulation and enzyme immobilization were discussed, together with the future prospects of such systems.
Brazilian Journal of Chemical Engineering | 2012
Zhen-Xing Tang; Xiu-Juan Fang; Zhi-Liang Zhang; Ting Zhou; Xin-Yi Zhang; Lu-E Shi
The antibacterial activity of MgO nanoparticles prepared by a sonication method was evaluated in this paper. The effect of calcination conditions on the size and antibacterial activity of MgO nanoparticles was investigated. MgO nanoparticles were characterized for purity (TGA), crystallinity and crystal size (XRD), particle size and morphology (TEM) and surface area (BET). Results showed that the smallest size of 6 nm could be obtained. The lethal effects of nanocrystalline MgO were evaluated on Lactobacillus plantarum. At a concentration of 100 ppm, the killing effect of MgO was close to 1 log reduction for L. plantarum after 24 h exposure. At 1000 ppm and 24 h exposure, the killing effect of MgO was more than a 2.8 log reduction. With the increase of calcination time, the lethal effect of MgO nanoparticles increased after 6 h or 24 h exposure at 100 ppm or 1000 ppm. 2.86 log and 2.89 log were killed at 1000 ppm after 24 h exposure using the sample MgO, sonication, A, and the sample MgO, sonication, B, respectively. When the sample MgO, sonication, C, was used, the lethal quantity of L. plantarum was increased to a 3.36 log reduction.
International Journal of Food Sciences and Nutrition | 2013
Ling-Xia Pan; Xiu-Juan Fang; Zhen Yu; Yang Xin; Xiao-Ying Liu; Lu-E Shi; Zhen-Xing Tang
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) was encapsulated in alginate–skim milk microspheres. Characteristics of encapsulated L. bulgaricus, such as pH stability, bile stability, storage stability and release property, were studied in this paper. The viability of free L. bulgaricus was not observed after 1 min in simulated gastric fluids (SGF) at pH 2.5 or 2.0. Compared with that of free L. bulgaricus, the viability of encapsulated L. bulgaricus only decreased 0.7 log CFU/g and 2 log CFU/g after 2.0 h incubation in SGF at pH 2.5 and pH 2.0, respectively. L. bulgaricus was also sensitive to bile solution. The viability of free L. bulgaricus was fully lost after 1 h incubation in 1 and 2% bile solution, while the viability of encapsulated L. bulgaricus was only lost 2 log CFU/g and 2.6 log CFU/g in 1 and 2% bile solution at the same time, respectively. Encapsulated L. bulgaricus could be completely released from microspheres in simulated intestinal fluid (pH 6.8) within 2 h. The viability of encapsulated L. bulgaricus retained around 8 log CFU/g when stored at 4°C for 30 days. The current encapsulation technique enables a large proportion of L. bulgaricus to remain good bioactive in a simulated gastrointestinal tract environment.
Brazilian Archives of Biology and Technology | 2014
Meng-Yan Chen; Wei Zheng; Qiu-Yue Dong; Zhen-Hua Li; Lu-E Shi; Zhen-Xing Tang
In this work, alginate-whey protein was used as wall materials for encapsulating Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The characteristics of encapsulated and free L. bulgaricus showed that the free L. bulgaricus lost viability after 1 min exposure to simulated gastric fluid (SGF) at pH 2.0 and 2.5. However, the viability of encapsulated L. bulgaricus did not decrease in SGF at pH 2.5 for 2 h incubation. The viable numbers of encapsulated L. bulgaricus decreased less than 1.0 log unit for 2 h incubation in SGF at pH 2.0. For bile stability, only 1.2 log units and 2.0 log units viability of the encapsulated L. bulgaricus was lost in 1 and 2% bile for 1 h exposure, respectively, compared with no survival of free L. bulgaricus under the same conditions. Encapsulated L. bulgaricus was completely released from the microspheres in simulated intestinal fluid (SIF, pH 6.8) in 3 h. The viability of the encapsulated L. bulgaricus retained more 8.0 log CFU/g after stored at 4°C for four weeks. However, for free L. bulgaricus, only around 3.0 log CFU/mL was found at the same storage conditions. Results showed that the encapsulation could improve the stability of L. bulgaricus.
Brazilian Journal of Chemical Engineering | 2010
Lu-E Shi; Yu Yi; Zhen-Xing Tang; Wen-Yue Xiong; Jiang-Feng Mei; Guoqing Ying
Effects of various factors, such as pH, ionic strength, glutaraldehyde concentration, enzyme amount and immobilization time, on enzyme activity were investigated. The immobilization conditions were optimized by orthogonal experiments. Characterizations of immobilized nuclease p1 were also evaluated. Through orthogonal optimization, the optimal immobilization conditions were as follows: pH 5.6, ionic strength 0.125, glutaraldehyde concentration 0.20% and immobilization time 2.0 h. Optimal pH of immobilized enzyme was 5.8. Optimal temperature of immobilized enzyme was 70oC. Thermal, operational and storage stabilities of the enzyme were improved after it was immobilized on DEAE cellulose. Michaelis constant Km of immobilized enzyme at 69oC was found to be 27.21 g/l by the Lineweaver-Burk plot.
Brazilian Journal of Chemical Engineering | 2009
Lu-E Shi; Zhen-Xing Tang
The sorption of nuclease P1 onto chitosan nano-particles is studied in this paper. The effect of some adsorption kinetics factors such as nuclease P1 concentration, chitosan nano-particles solution concentration, adsorption temperature, chitosan nano-particles size, solution pH, etc. is investigated. Adsorption of nuclease P1 onto chitosan nano-particles is fitted into Lagergren first-order equation at initial nuclease P1 concentration of 3.0 mg/mL. The first-order constant for nuclease P1 is 22.98 h-1. When nuclease P1 concentration is controlled into certain region, the adsorption fits into Freundlich isothermal linear equation. A mechanism of adsorption for nuclease P1 is proposed by analyzing IR spectra. The IR spectra shows that the hydrogen bond might be the main force between the hydroxyl group, the NH2 group and the nuclease P1.
Química Nova | 2013
Zhen-Xing Tang; Zhen Yu; Zhi-Liang Zhang; Xin-Yi Zhang; Qin-Qin Pan; Lu-E Shi
The effect of calcination conditions on the size and killing activity of CaO nanoparticles towards L. plantarum was studied in this paper. The results showed that CaO nanoparticles with a diameter of 20 nm could be obtained under the investigated conditions. The lethal effect of CaO nanoparticles after incubation of 6 or 24 h increased with increasing calcination time. Using CaO-SA, CaO-SB, and CaO-SC after a 24-h exposure, 2.25, 3.37, and 5.97 log L. plantarum were killed, respectively, at a concentration of 100 ppm. The current results show that the use of CaO nanoparticles as antibacterial agents has significant potential in food-relevant industries.
Brazilian Archives of Biology and Technology | 2015
Yu Zhang; Wei Zheng; Jian-Fei Gu; Jian Ni; Ling Wang; Zhen-Xing Tang; Lu-E Shi
In this work, the mixture of alginate and soy protein isolate used as a wall material was developed to encapsulateEnterococcus faecalis HZNU P2 (E. faecalis HZNU P2). The survival ability in the simulated gastric fluid (SGF) and bile salt solution, storage stability at different temperatures and release properties in the simulated intestinal fluid (SIF) of encapsulated cells were assessed. The results showed that encapsulation could offer sufficient protection toE. faecalis HZNU P2. The viability of encapsulatedE. faecalis HZNU P2 did not decrease in SGF at pH 2.5 or 2.0 after 2 h incubation, while free cells were reduced from 11 to 9.85 log CFU/mL in SGF (pH 2.5) at the same exposure time. Only minor viability of encapsulatedE. faecalis HZNU P2 lost in 1.0 or 2.0% bile salt solution for 1 or 2 h exposure, compared with no survival of freeE. faecalis HZNU P2 under the same conditions. EncapsulatedE. faecalis HZNU P2 was completely released from the microspheres in SIF within 1 h. The viability of encapsulatedE. faecalisHZNU P2 stored for two weeks at 4°C was fully retained. Viabilities of encapsulatedE. faecalis HZNU P2, 9.6 and 9.0 Log CFU/g were obtained at 25 and 37°C after 21 days storage, respectively. However, around 1.0 log CFU/mL of free cells was reduced after two weeks storage at 4°C. EncapsulatedE. faecalis HZNU P2 using soy protein isolate and alginate as wall materials could play an important role in food applications.
Biotechnology & Biotechnological Equipment | 2014
Xiu-Juan Fang; Zhen-Xing Tang; Zhen-Hua Li; Zhi-Liang Zhang; Lu-E Shi
A new non-specific nuclease from Yersinia enterocolitica subsp. palearctica (Y. NSN) was expressed in Escherichia coli (E. coli) BL 21 StarTM (DE3)plysS. Induction conditions, including isopropyl-β-D-thiogalactoside (IPTG) concentration, cell density (OD600), induction time and induction temperature, were optimized using response surface methodology. Statistical analysis of the results revealed that induction temperature and all the quadratic terms of variables had significant effects on enzyme activity of Y. NSN. The optimal induction conditions were as follows: 1.5 mmol/L IPTG, OD600 of 0.80, induction time of 20.5 h, and induction temperature of 32 °C. Under the optimized conditions, the highest enzyme activity could be obtained.