Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lu Kong is active.

Publication


Featured researches published by Lu Kong.


Journal of Hazardous Materials | 2012

Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages.

Ting Zhang; Meng Tang; Lu Kong; Han Li; Tao Zhang; Shanshan Zhang; Yuying Xue; Yuepu Pu

The increased application of carbon nanotubes (CNTs) has raised the level of public concern regarding possible toxicities. Using in vitro cellular assays, we were able to assess the immunotoxicity of pristine multi-wall carbon nanotubes (MWCNTs) and their derivatives, covalently functionalized with carboxyl (COOH) or polyethylene glycol (PEG), in rodent macrophage cells. Moreover, special focus was placed on the role of surface modification and nanotubes aggregation on toxicity. Results showed that pristine MWCNTs reduce cell viability compared with functionalized MWCNTs in RAW 264.7 macrophages when incubated at concentrations of 25, 50, 100, 200, 400, and 800 μg/mL. However, in addition to causing cytotoxicity, functionalized MWCNTs induce serious inflammatory responses, as indicated by the production of inflammatory cytokines including TNF-α, IL-1β and IL-6 at various MWCNTs concentrations (25, 50, 100, and 200 μg/mL). Particle surface modification and dispersion status in biological medium were key factors in determining cytotoxicity. These findings imply that MWCNTs-induced inflammatory responses in macrophages may be associated with surface modification and aggregation of MWCNTs, which is reflected by alteration of inflammatory cytokine expression.


International Journal of Molecular Sciences | 2014

Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

Lu Kong; Meng Tang; Ting Zhang; Dayong Wang; Ke Hu; Weiqi Lu; Chao Wei; Geyu Liang; Yuepu Pu

Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.


International Journal of Molecular Sciences | 2015

Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo

Ting Zhang; Yuanyuan Hu; Meng Tang; Lu Kong; Jiali Ying; Tianshu Wu; Yuying Xue; Yuepu Pu

With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.


PLOS ONE | 2013

Determination of a Threshold Dose to Reduce or Eliminate CdTe-Induced Toxicity in L929 Cells by Controlling the Exposure Dose

Xiaorun Liu; Meng Tang; Ting Zhang; Yuanyuan Hu; Shanshan Zhang; Lu Kong; Yuying Xue

With the widespread use of quantum dots (QDs), the likelihood of exposure to quantum dots has increased substantially. The application of quantum dots in numerous biomedical areas requires detailed studies on their toxicity. In this study, we aimed to determine the threshold dose which reduced or eliminated CdTe-induced toxicity in L929 cells by controlling the exposure dose. We established a cellular model of acute exposure to CdTe QDs. Cells were exposed to different concentrations of CdTe QDs (2.2 nm and 3.5 nm) followed by illustrative cytotoxicity analysis. The results showed that low concentrations of CdTe QDs (under 10 µg/mL) promoted cell viability, caused no obvious effect on the rate of cell apoptosis, intracellular calcium levels and changes in mitochondrial membrane potential, while high concentrations significantly inhibited cell viability. In addition, reactive oxygen species in the 10 µg/mL-treated group was significantly reduced compared with the control group. In summary, the cytotoxicity of CdTe QDs on L929 cell is dose-dependent, time-dependent and size-dependent. Low concentrations of CdTe QDs (below 10 µg/mL) may be nontoxic and safe in L929 cells, whereas high concentrations (above 10 µg/mL) may be toxic resulting in inhibition of proliferation and induction of apoptosis in L929 cells.


Journal of Hazardous Materials | 2015

Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage.

Ting Zhang; Meng Tang; Lu Kong; Han Li; Tao Zhang; Yuying Xue; Yuepu Pu

Carbon nanotubes (CNTs) are widely used in industry and biomedicine. While several studies have focused on biological matters, attempts to systematically elucidate the toxicity mechanisms of CNTs are limited. The aim of the present study was to evaluate and compare the cytotoxicity of raw multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylation (MWCNTs-COOH) or polyethylene glycol (MWCNTs-PEG) in murine macrophages. Our results show that only MWCNTs-COOH and raw MWCNTs alter the oxidative potential of macrophages by increasing reactive oxygen species and the expression of pro-inflammatory factors in both a concentration- and surface coating-dependent manner. The data suggest that compare with raw MWCNTs and MWCNTs-PEG, the MWCNTs-COOH produces a significant increase in ROS generation, interruption of ATP synthesis, and activation of the MAPK and NF-κB signaling pathways, which in turn upregulates IL-1β, IL-6, TNF-α, and iNOS to trigger cell death. These findings suggest that contributory cellar uptake caused by physicochemical factors rather than residual metal catalysts plays a role in ROS-mediated pro-inflammatory responses in vitro.


International Journal of Environmental Research and Public Health | 2015

Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells

Ting Zhang; Yiqing Wang; Lu Kong; Yuying Xue; Meng Tang

Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts.


Human & Experimental Toxicology | 2018

Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells

Yuying Xue; J Wang; Yanmei Huang; Xiaojie Gao; Lu Kong; Ting Zhang; Meng Tang

Silver nanoparticles are used in many commercial products in daily life. Exposure to nanosilver has hepatotoxic effects in animals. This study investigated the cytotoxicity associated with polyvinylpyrrolidone-coated nanosilver (23.44 ± 4.92 nm in diameter) exposure in the human hepatoma cell line (HepG2) and normal hepatic cell line (L02), and the molecular mechanisms induced by nanosilver in HepG2 cells. Nanosilver, in doses of 20–160 μg mL−1 for 24 and 48 h, reduced cell viability in a dose- and time-dependent manner and induced cell membrane leakage and mitochondria injury in both cell lines; these effects were more pronounced in HepG2 cells than in L02 cells. Intracellular oxidative stress was documented by reactive oxygen species (ROS) being generated in HepG2 cells but not in L02 cells, an effect possibly due to differential uptake of nanosilver by cancer cells and normal cells. In HepG2 cells, apoptosis was documented by finding that ROS triggered a decrease in mitochondrial membrane potential, an increase in cytochrome c release, activation of caspase 3 and caspase 9, and a decrease in the ratio of Bcl-2/Bax. Furthermore, nanosilver activated the Fas death receptor pathway by downregulation of nuclear factor-κB and activation of caspase 8 and caspase 3. These results suggest that apoptosis induced by nanosilver in HepG2 cells is mediated via a mitochondria-dependent pathway and the Fas death receptor pathway. These findings provide toxicological and mechanistic information that can help in assessing the effects of nanosilver in biological systems, including the potential for anticancer activities.


Environmental Toxicology | 2017

Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans

Lu Kong; Xiaojie Gao; Jiaqian Zhu; Ting Zhang; Yuying Xue; Meng Tang

To investigate the reproductive toxicity and underlying mechanism of nickel nanoparticles (Ni NPs), Caenorhabditis elegans (C. elegans) were treated with/without 1.0, 2.5, and 5.0 μg cm−2 of Ni NPs or nickel microparticles (Ni MPs). Generation time, fertilized egg numbers, spermatide activation and motility were detected. Results indicated, under the same treatment doses, that Ni NPs induced higher reproductive toxicity to C. elegans than Ni MPs. Reproductive toxicities observed in C. elegans included a decrease in brood size, fertilized egg and spermatide activation, but an increase in generation time and out‐of‐round spermatids. The reproductive toxicity of Ni NPs on C. elegans may be induced by oxidative stress. The reproductive toxicity in C. elegans induced by Ni NPs is consistent with our previous results in the rats. Therefore, C. elegans can be used as an alternative model to detect the early reproductive toxicity of Ni NPs exposure.


Chemosphere | 2019

Genome-wide identification and functional analysis of long non-coding RNAs in human endothelial cell line after incubation with PM2.5

Yan Wang; Tianshu Wu; Lingyue Zou; Lilin Xiong; Ting Zhang; Lu Kong; Yuying Xue; Meng Tang

Epidemiological studies and experimental research have illustrated that PM2.5 has an association with cardiovascular adverse events. However, the underlying mechanisms are still unknown. Long non-coding RNAs (lncRNAs) have been proposed to take part in diverse diseases. To comprehensively gain insight into the molecular toxicity of PM2.5, expression patterns are analyzed in EA.hy926 cell line through RNAs microarray. A total of 356 lncRNA transcripts are dysregulated in 2.5 μg/cm2 group, and there are 1283 lncRNAs differentially expressed in 10 μg/cm2 group. From functional analysis, several lncRNAs may be implicated in the bio-pathways of phagosome, TNF signaling pathway, chemokine signaling pathway and gap junction. Moreover, certain lncRNAs participate in the toxicity of PM2.5 through cis- and/or trans-regulation of their co-expressed genes. Therefore, lncRNAs may be used as new candidate biomarkers and potentially preventive targets in cardiotoxicity of PM2.5. Our study indicates that not limited to transcriptional regulation, post-transcriptional regulation plays a pivotal role in PM2.5-caused toxicity.


Ecotoxicology and Environmental Safety | 2018

Analysis of differentially changed gene expression in EA.hy926 human endothelial cell after exposure of fine particulate matter on the basis of microarray profile

Yan Wang; Lilin Xiong; Tianshu Wu; Ting Zhang; Lu Kong; Yuying Xue; Meng Tang

Epidemiological studies have illustrated that PM2.5 is closely related to cardiovascular disease (CVD), but underlying toxicological mechanisms are not yet clear. The main purpose of this study is to disclose the potential biological mechanisms responsible for PM2.5-dependent adverse cardiovascular outcomes through the appliance of genome-wide transcription microarray. From results, compared with the control group, there are 97 genes significantly altered in 2.5 μg/cm2 PM2.5 treated group and 440 differentially expressed genes in 10 μg/cm2 group. Of note, when 2.5 μg/cm2 and 10 μg/cm2 group were respectively compared with the control group, 46 significantly altered genes showed a consistent tendency in two treated groups, of which 31 genes were upregulated while 15 genes were meanwhile downregulated. Based on Gene Ontology (GO) annotation, altered genes are mainly gathered in functions of cellular processes and immune regulation. Pathway analysis indicated that TNF signaling pathway, NOD-like receptor (NLRs) signaling pathway, MAPK signaling pathway and gap junction are vital pathways involved in PM2.5-induced toxicity in EA.hy926. Moreover, results from RT-qPCR further corroborated that changed genes are implicated in oxidative stress, inflammation and metabolic disorder. In addition, metabolism of xenobiotics by cytochrome P450 pathway is the critical pathway which may serve as a target to prevent PM2.5-induced CVD. To sum up, our effort provides a fundamental data for further studies regarding mechanisms of PM2.5-induced cardiovascular toxicity on the basis of genome-wide screening.

Collaboration


Dive into the Lu Kong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuepu Pu

Southeast University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge