Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lu-Qi Tao is active.

Publication


Featured researches published by Lu-Qi Tao.


ACS Applied Materials & Interfaces | 2016

Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure

Yu Pang; He Tian; Lu-Qi Tao; Yu-Xing Li; Xue-Feng Wang; Ning-Qin Deng; Yi Yang; Tian-Ling Ren

A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.


Nature Communications | 2017

An intelligent artificial throat with sound-sensing ability based on laser induced graphene

Lu-Qi Tao; He Tian; Ying Liu; Zhen-Yi Ju; Yu Pang; Yuan-Quan Chen; Dan-Yang Wang; Xiang-Guang Tian; Jun-Chao Yan; Ning-Qin Deng; Yi Yang; Tian-Ling Ren

Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.


ACS Nano | 2017

Graphene-Paper Pressure Sensor for Detecting Human Motions

Lu-Qi Tao; Kun-Ning Zhang; He Tian; Ying Liu; Dan-Yang Wang; Yuan-Quan Chen; Yi Yang; Tian-Ling Ren

Pressure sensors should have an excellent sensitivity in the range of 0-20 kPa when applied in wearable applications. Traditional pressure sensors cannot achieve both a high sensitivity and a large working range simultaneously, which results in their limited applications in wearable fields. There is an urgent need to develop a pressure sensor to make a breakthrough in both sensitivity and working range. In this paper, a graphene-paper pressure sensor that shows excellent performance in the range of 0-20 kPa is proposed. Compared to most reported graphene pressure sensors, this work realizes the optimization of sensitivity and working range, which is especially suitable for wearable applications. We also demonstrate that the pressure sensor can be applied in pulse detection, respiratory detection, voice recognition, as well as various intense motion detections. This graphene-paper pressure sensor will have great potentials for smart wearable devices to achieve health monitoring and motion detection.


Nanoscale | 2016

High performance flexible strain sensor based on self-locked overlapping graphene sheets.

Dan-Yang Wang; Lu-Qi Tao; Ying Liu; Tian-Yu Zhang; Yu Pang; Qian Wang; Song Jiang; Yi Yang; Tian-Ling Ren

Strain sensors have been widely used in the fields of wearable devices, robot arms, medical sensing, bio-sensing, artificial skin and so on, but the existing strain sensors have some shortcomings such as a limited gauge factor (GF) or strain range. We fabricate a novel and flexible strain sensor with high performance based on self-locked overlapping graphene sheets (SOGS) which can be used for wearable devices. Polydimethylsiloxane (PDMS) is used to lock the overlapping graphene sheets, and then the graphene can be stretched and achieve an ultrahigh GF. In addition, a new theory is put forward to explain the GF changes with strain range for the SOGS strain sensor. In this work, graphene oxide (GO) film is reduced to reduced GO (rGO) by a laser. Then, the SOGS and electrodes are encapsulated by PDMS. The SOGS strain sensor has a high GF up to 400 and strain range over 7.5%, and this SOGS strain sensor achieves a balance between high sensitivity and large strain range compared with other existing strain sensors. Furthermore the theoretical equation based on the new theory agrees well with the experimental results. And this strain sensor can be used in many applications because of its high sensitivity. Some applications of the SOGS strain sensors are demonstrated for the detection of various human motions and human sounds. The SOGS strain sensor can exhibit great potential in wearable electronics because of its good balance between high sensitivity and large strain.


Journal of Semiconductors | 2016

Surface acoustic wave devices for sensor applications

Bo Liu; Xiao Chen; Hua-Lin Cai; Mohammad Ali Mohammad; Xiang-Guang Tian; Lu-Qi Tao; Yi Yang; Tian-Ling Ren

Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed.


Journal of Semiconductors | 2016

Fabrication techniques and applications of flexible graphene-based electronic devices

Lu-Qi Tao; Dan-Yang Wang; Song Jiang; Ying Liu; Qian-Yi Xie; He Tian; Ning-Qin Deng; Xue-Feng Wang; Yi Yang; Tian-Ling Ren

In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future.


Applied Physics Letters | 2017

Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

Ying Liu; Lu-Qi Tao; Dan-Yang Wang; Tian-Yu Zhang; Yi Yang; Tian-Ling Ren

In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa − 1, and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.


Scientific Reports | 2015

Coherent generation of photo-thermo-acoustic wave from graphene sheets

Yichao Tian; He Tian; Yanling Wu; L. L. Zhu; Lu-Qi Tao; Wei Zhang; Yi Shu; Dan Xie; Yuting Yang; Z. Y. Wei; Xinghua Lu; Tian-Ling Ren; Chih-Kang Shih; Jimin Zhao

Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc.


Nanomaterials | 2016

A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene

Lu-Qi Tao; Ying Liu; Zhen-Yi Ju; He Tian; Qian-Yi Xie; Yi Yang; Tian-Ling Ren

A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging.


AIP Advances | 2016

High-resolution, high-linearity temperature sensor using surface acoustic wave device based on LiNbO3/SiO2/Si substrate

Xiang-Guang Tian; Heng Liu; Lu-Qi Tao; Yi Yang; Hanjun Jiang; Tian-Ling Ren

A high-resolution and high-linearity surface acoustic wave (SAW) temperature sensor, consisting of a SAW resonator device fabricated on novel X-cut LiNbO3/SiO2/Si piezoelectric substrate and a resonance frequency readout chip using standard 180 nm CMOS technology, is presented for the first time. High temperature performance substrate LiNbO3/SiO2/Si is prepared mainly by ion implantation and wafer bonding at first. RF SAW device with resonance frequency near 900 MHz is designed and fabricated on the substrate. Traditional probe method using network analyzer and the readout chip method are both implemented to characterize the fabricated SAW device. Further measurement of temperature using resonance frequency shift of SAW device demonstrates the feasibility of the combined system as a portable SAW temperature sensor. The obtained frequency-temperature relation of the fabricated device is almost linear. The frequency resolution of the readout chip is 733 Hz and the corresponding temperature accuracy is 0.016 ° C. Resolution of the sensor in this work is superior to most of the commercial temperature measurement sensors. Theory analysis and finite element simulation are also presented to prove the mechanism and validity of using SAW device for temperature detection applications. We conclude that the high-linearity frequency-temperature relation is achieved by the offset between high-order coefficients of LiNbO3 and SiO2 with opposite signs. This work offers the possibility of temperature measuring in ultra-high precision sensing and control applications.

Collaboration


Dive into the Lu-Qi Tao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge