Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lu Wen-Chi Corrie is active.

Publication


Featured researches published by Lu Wen-Chi Corrie.


Cough | 2008

Short reflex expirations (expiration reflexes) induced by mechanical stimulation of the trachea in anesthetized cats.

Ivan Poliacek; Melanie J. Rose; Lu Wen-Chi Corrie; Cheng Wang; Jan Jakus; Baráni H; Stránsky A; Hubert Poláček; Erika Halasova; Donald C. Bolser

Fifty spontaneously breathing pentobarbital-anesthetized cats were used to determine the incidence rate and parameters of short reflex expirations induced by mechanical stimulation of the tracheal mucosa (ERt). The mechanical stimuli evoked coughs; in addition, 67.6% of the stimulation trials began with ERt. The expiration reflex mechanically induced from the glottis (ERg) was also analyzed (99.5% incidence, p < 0.001 compared to the incidence of ERt). We found that the amplitudes of abdominal, laryngeal abductor posterior cricoarytenoid, and laryngeal adductor thyroarytenoid electromyograms (EMG) were significantly enhanced in ERg relative to ERt. Peak intrathoracic pressure (esophageal or intra-pleural pressure) was higher during ERg than ERt. The interval between the peak in EMG activity of the posterior cricoarytenoid muscle and that of the EMG of abdominal muscles was lower in ERt compared to ERg. The duration of thyroarytenoid EMG activity associated with ERt was shorter than that in ERg. All other temporal features of the pattern of abdominal, posterior cricoarytenoid, and thyroarytenoid muscles EMGs were equivalent in ERt and ERg.In an additional 8 cats, the effect of codeine administered via the vertebral artery was tested. Codeine, in a dose (0.03 mg/kg) that markedly suppressed cough did not significantly alter either the incidence rate or magnitudes of ERt.In the anesthetized cat the ERt induced by mechanical stimulation of the trachea was similar to the ERg from the glottis. These two reflex responses differ substantially only in the frequency of occurrence in response to mechanical stimulus and in the intensity of motor output.


Journal of Applied Physiology | 2010

Microinjection of codeine into the region of the caudal ventral respiratory column suppresses cough in anesthetized cats.

Ivan Poliacek; Cheng Wang; Lu Wen-Chi Corrie; Melanie J. Rose; Donald C. Bolser

We investigated the influence of microinjection of codeine into the caudal ventral respiratory column (cVRC) on the cough reflex. Experiments were performed on 36 anesthetized spontaneously breathing cats. Electromyograms (EMGs) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. The unilateral microinjection of codeine (3.3 mM, 20-32 nl) in the cVRC reduced cough number by 29% (P < 0.01) and expiratory cough amplitudes of esophageal pressure by 33% (P < 0.05) as well as both ipsilateral and contralateral ABD EMGs by 35% and 48% (P < 0.01 and P < 0.01, respectively). No cough depression was observed after microinjections of vehicle. There was no significant effect of microinjection of codeine in the cVRC (3.3 mM, 30-40 nl) on ABD activity induced by a microinjection of D,L-homocysteic acid (30 mM, 27-40 nl) in the same location. However, a cumulative dose of codeine (0.1 mg/kg, 330 nmol/kg) applied into the brain stem circulation through the vertebral artery reduced the ABD motor response to cVRC D,L-homocysteic acid microinjection (30 mM, 28-32 nl) by 47% (P < 0.01). These results suggest that 1) codeine can act within the cVRC to suppress cough and 2) expiratory premotoneurons within the cVRC are relatively insensitive to this opioid.


Journal of Applied Physiology | 2011

Blood pressure changes alter tracheobronchial cough: computational model of the respiratory-cough network and in vivo experiments in anesthetized cats

Ivan Poliacek; Kendall F. Morris; Bruce G. Lindsey; Lauren S. Segers; Melanie J. Rose; Lu Wen-Chi Corrie; Cheng Wang; Teresa Pitts; Paul W. Davenport; Donald C. Bolser

We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.


Journal of Biological Chemistry | 2014

The Activity of GAT107, an Allosteric Activator and Positive Modulator of α7 Nicotinic Acetylcholine Receptors (nAChR), Is Regulated by Aromatic Amino Acids That Span the Subunit Interface

Roger L. Papke; Nicole A. Horenstein; Abhijit R. Kulkarni; Clare Stokes; Lu Wen-Chi Corrie; Cheol-Young Maeng; Ganesh A. Thakur

Background: Nicotinic acetylcholine receptors are activated by agonists at an orthosteric site and modulated by ligands at allosteric sites. Results: We identify amino acids required for the coupling between orthosteric and allosteric sites. Conclusion: Allosteric activation can occur even when the orthosteric binding site is nonfunctional. Significance: Insights are provided into the cooperative functions of orthosteric and allosteric activators of the α7 nAChR. GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.


Environmental Biology of Fishes | 2008

Brood protection at a cost: mouth brooding under hypoxia in an African cichlid

Lu Wen-Chi Corrie; Lauren J. Chapman; Erin E. Reardon

This study quantifies the behavioral response of the widespread mouth brooding African cichlid Pseudocrenilabrus multicolor victoriae to progressive hypoxia. We exposed four gender/stage classes of P. multicolor (males, brooding females, females that had just released young, and non-brooding females) to progressive hypoxia and recorded the percent time spent using aquatic surface respiration (surface skimming, ASR) and gill ventilation rates. This was done for fish collected from three sites in Uganda (lake, swamp, and river) after long-term acclimation to normoxia. There was no effect of site of origin on response to hypoxia, but ASR thresholds did differ between gender/stage classes. The oxygen level (threshold) at which spent 10, 50, and 90% of their time at the surface using ASR was much higher for brooding females than for males, whereas ASR thresholds did not differ between non-brooding females and males. Similarly, the level at which ASR was initiated was much higher in brooding females than males, but did not differ between males and non-brooders, or between males and females than had just released young. The rate of gill ventilation dropped significantly in males and all stages of females after initiation of ASR, suggesting that surface skimming increases efficiency of oxygen acquisition. These results suggest that mouth brooding in female P. multicolor ASR improves oxygen uptake but imposes a cost in terms of time spent at the water surface, and this may affect maternal predation risk in low-oxygen habitats.


Journal of Applied Physiology | 2015

Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats

Ivan Poliacek; Melanie J. Rose; Teresa Pitts; Ashley N. Mortensen; Lu Wen-Chi Corrie; Paul W. Davenport; Donald C. Bolser

We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism.


Journal of Applied Physiology | 2007

Microinjection of DLH into the region of the caudal ventral respiratory column in the cat: Evidence for an endogenous cough suppressant mechanism

Ivan Poliacek; Lu Wen-Chi Corrie; Cheng Wang; Melanie J. Rose; Donald C. Bolser


Journal of Physiology and Pharmacology | 2008

INFLUENCE OF MICROINJECTIONS OF D,L-HOMOCYSTEIC ACID INTO THE BOTZINGER COMPLEX AREA ON THE COUGH REFLEX IN THE CAT

Ivan Poliacek; Lu Wen-Chi Corrie; Melanie J. Rose; Chenguang Wang; Donald C. Bolser


Archive | 2015

catcough and expiratory threshold loading in the Responses of the anterolateral abdominal muscles

Donald C. Bolser; Paul J. Reier; Paul W. Davenport; Wen-Chi Corrie; Cheng Wang; Teresa Pitts; Ivan Poliacek; Kendall F. Morris; Bruce G. Lindsey; Lauren S. Segers; Melanie J. Rose; I. Poliacek; M. J. Rose; T. E. Pitts; Ashley N. Mortensen; Lu Wen-Chi Corrie; P. W. Davenport; D. C. Bolser


Archive | 2015

anesthetized cats ventral respiratory column suppresses cough in Microinjection of codeine into the region of the caudal

Ivan Poliacek; Cheng Wang; Lu Wen-Chi Corrie; Melanie J. Rose; C Donald; Elenia Cinelli; Fulvia Bongianni; Tito Pantaleo; Donatella Mutolo

Collaboration


Dive into the Lu Wen-Chi Corrie's collaboration.

Top Co-Authors

Avatar

Ivan Poliacek

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Pitts

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce G. Lindsey

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Lauren S. Segers

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Baráni H

Jessenius Faculty of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge