Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luana Nionelli is active.

Publication


Featured researches published by Luana Nionelli.


Applied and Environmental Microbiology | 2011

Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread

Rossana Coda; Angela Cassone; Carlo Giuseppe Rizzello; Luana Nionelli; Gianluigi Cardinali; Marco Gobbetti

ABSTRACT This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/salt-soluble extract of S1A7 was partially purified, and several novel antifungal peptides, encrypted into sequences of Oryza sativa proteins, were identified. The water/salt-soluble extract of D1695 contained ethanol and, especially, ethyl acetate as inhibitory compounds. As shown by growth inhibition assays, both water/salt-soluble extracts had a large inhibitory spectrum, with some differences, toward the most common fungi isolated from bakeries. Bread making at a pilot plant was carried out with S1A7, D1695, or a sourdough started with a combination of both strains (S1A7-1695). Slices of the bread manufactured with S1A7-1695 did not show contamination by fungi until 28 days of storage in polyethylene bags at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. The effect of sourdough fermentation with W. anomalus LCF1695 was also assessed based on rheology and sensory properties.


Journal of Applied Microbiology | 2010

Spelt and emmer flours: characterization of the lactic acid bacteria microbiota and selection of mixed starters for bread making

Rossana Coda; Luana Nionelli; Carlo Giuseppe Rizzello; M. De Angelis; P. Tossut; Marco Gobbetti

Aims:  This study aimed at characterizing the lactic acid bacteria microbiota and selecting mixed endogenous starters to be used for sourdough fermentation of spelt or emmer flours.


Nutrition and Cancer | 2012

Synthesis of the cancer preventive peptide lunasin by lactic acid bacteria during sourdough fermentation.

Carlo Giuseppe Rizzello; Luana Nionelli; Rossana Coda; Marco Gobbetti

This study aimed to exploit the potential of sourdough lactic acid bacteria to release lunasin during fermentation of cereal and nonconventional flours. The peptidase activities of a large number of sourdough lactic acid bacteria were screened using synthetic substrates. Selected lactic acid bacteria were used as sourdough starters to ferment wholemeal wheat, soybean, barley, amaranth, and rye flours. Proteinase activity during fermentation was characterized by SDS-PAGE analysis of the water-soluble extracts. Albumins having molecular masses of 18 to 22 kDa, which included the size of lunasin precursors, were markedly affected by proteolysis of lactic acid bacteria. After fermentation, lunasin from the water-soluble extracts was quantified, purified, and identified through RP-HPLC and nano-LC-ESI-MS analyses. Compared to control doughs, the concentration of lunasin increased up to 2–4 times during fermentation. Lactobacillus curvatus SAL33 and Lactobacillus brevis AM7 synthesized the highest concentrations of lunasin in all the flours. Besides the presence of the entire lunasin sequence, fragments containing the immunoreactive epitope RGDDDDDDDDD were also found. This study shows that fermentation by lactic acid bacteria increased the concentration of lunasin to levels that would suggest new possibilities for the biological synthesis and for the formulation of functional foods.


Applied and Environmental Microbiology | 2015

Organic Cultivation of Triticum turgidum subsp. durum Is Reflected in the Flour-Sourdough Fermentation-Bread Axis

Carlo Giuseppe Rizzello; Ivana Cavoski; Jelena Turk; Danilo Ercolini; Luana Nionelli; Erica Pontonio; Maria De Angelis; Francesca De Filippis; Marco Gobbetti; Raffaella Di Cagno

ABSTRACT Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis.


Food Microbiology | 2014

Exploitation of Albanian wheat cultivars: Characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation

Luana Nionelli; Nertila Curri; José Antonio Curiel; Raffaella Di Cagno; Erica Pontonio; Ivana Cavoski; Marco Gobbetti; Carlo Giuseppe Rizzello

Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions.


Food Microbiology | 2015

Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads.

Erica Pontonio; Luana Nionelli; José Antonio Curiel; Alireza Sadeghi; Raffaella Di Cagno; Marco Gobbetti; Carlo Giuseppe Rizzello

This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions.


Food Microbiology | 2010

Exploitation of Acha (Digitaria exiliis) and Iburu (Digitaria iburua) flours: Chemical characterization and their use for sourdough fermentation

Rossana Coda; Raffaella Di Cagno; Mojisola O. Edema; Luana Nionelli; Marco Gobbetti

This study aimed at characterizing the chemical and microbiological composition of Acha (Digitaria exiliis) and Iburu (Digitaria iburua) flours and at exploiting their potential for sourdough fermentation. Both the flours had a gross composition similar to other cereals. As shown by two-dimensional electrophoresis analysis, Acha flour had a higher number of prolamins with respect to Iburu flour. The opposite was found for the number of glutelin spots. The concentration of total free amino acids of Iburu flour was higher than that of Acha flour (1348±34 vs. 100±20 mg/kg). Pediococcus pentosaceus was the dominant species in both the flours. Several isolates were used to ferment Acha or Iburu flours. After 8h fermentation at 30°C, pH ranged from 3.41 to 3.83 and from 4.20 to 4.66 for Acha and Iburu sourdoughs, respectively. The highest values of TTA and concentration of lactic acid were found in almost all Iburu sourdoughs. The synthesis of acetoin and γ-amino butyric acid (GABA) was only found in Iburu sourdoughs. Data from the kinetics of acidification, synthesis of lactic and acetic acids, acetoin, and liberation of total free amino acids were elaborated by Principal Component Analysis. Sourdoughs from Acha and Iburu flour were clearly differentiated.


International Journal of Food Microbiology | 2016

Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation

Asma Mamhoud; Luana Nionelli; Taroub Bouzaine; Moktar Hamdi; Marco Gobbetti; Carlo Giuseppe Rizzello

Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with bakers yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the industrial level, and the confirmed nutritional, textural, and sensory advantages of the final product.


International Journal of Food Microbiology | 2018

Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification

Luana Nionelli; Marco Montemurro; Erica Pontonio; Michela Verni; Marco Gobbetti; Carlo Giuseppe Rizzello

Lactic acid bacteria were isolated from hemp (Cannabis sativa L.) flour, spontaneously fermented dough, and type I sourdough. Isolates were identified and further selected based on pro-technological, nutritional and functional properties. Lactobacillus plantarum/s5, Pediococcus acidilactici/s5, and Leuconostoc mesenteroides/s1 were used as mixed starter to produce hemp sourdough. Significant decreases of the concentration of phytic acid, condensed tannins, and total saponins were observed during fermentation. The in vitro protein digestibility increased up to 90%. Experimental wheat breads were made adding 5% to 15% (w/w) hemp sourdough to the formula, characterized, and compared to bakers yeast wheat bread manufactured without hemp sourdough. The use of hemp sourdough improved the textural features of wheat bread, without adversely affect the sensory profile. Proportionally to the fortification with hemp sourdough, protein digestibility of the breads increased, while the predicted glycemic index significantly decreased (87 vs 100%). This work demonstrated that the fermentation with selected starters improved nutritional functionality of hemp flour, allowing its large-scale use in different food applications, meeting the consumers and producers request for novel fermented baked goods with a well-balanced nutritional profile.


Food Chemistry | 2010

Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ

Carlo Giuseppe Rizzello; Luana Nionelli; Rossana Coda; Maria De Angelis; Marco Gobbetti

Collaboration


Dive into the Luana Nionelli's collaboration.

Top Co-Authors

Avatar

Marco Gobbetti

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rossana Coda

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Ercolini

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesca De Filippis

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge