Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luana Toniolo is active.

Publication


Featured researches published by Luana Toniolo.


Nature Genetics | 2013

BMP signaling controls muscle mass.

Roberta Sartori; E. Schirwis; Bert Blaauw; Sergia Bortolanza; Jinghui Zhao; Elena Enzo; Amalia Stantzou; Etienne Mouisel; Luana Toniolo; Arnaud Ferry; Sigmar Stricker; Alfred L. Goldberg; Sirio Dupont; Stefano Piccolo; Helge Amthor; Marco Sandri

Cell size is determined by the balance between protein synthesis and degradation. This equilibrium is affected by hormones, nutrients, energy levels, mechanical stress and cytokines. Mutations that inactivate myostatin lead to excessive muscle growth in animals and humans, but the signals and pathways responsible for this hypertrophy remain largely unknown. Here we show that bone morphogenetic protein (BMP) signaling, acting through Smad1, Smad5 and Smad8 (Smad1/5/8), is the fundamental hypertrophic signal in mice. Inhibition of BMP signaling causes muscle atrophy, abolishes the hypertrophic phenotype of myostatin-deficient mice and strongly exacerbates the effects of denervation and fasting. BMP-Smad1/5/8 signaling negatively regulates a gene (Fbxo30) that encodes a ubiquitin ligase required for muscle loss, which we named muscle ubiquitin ligase of the SCF complex in atrophy-1 (MUSA1). Collectively, these data identify a critical role for the BMP pathway in adult muscle maintenance, growth and atrophy.


The FASEB Journal | 2009

Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation

Bert Blaauw; Marta Canato; Lisa Agatea; Luana Toniolo; Cristina Mammucari; Eva Masiero; Reimar Abraham; Marco Sandri; Stefano Schiaffino; Carlo Reggiani

A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF‐1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short‐term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy (̃50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single‐skinned muscle fibers. No changes in fiber‐type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt‐dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hyper‐trophic growth myonuclear domain can increase without compromising muscle performance.—Blaauw, B., Canato, M., Agatea, L., Toniolo, L., Mammucari, C., Masiero, E., Abraham, R., Sandri, M., Schiaffino, S., Reggiani, C. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEBJ. 23, 3896‐3905 (2009). www.fasebj.org


The Journal of Experimental Biology | 2004

Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles

Luana Toniolo; Marco Vincenzo Patruno; Lisa Maccatrozzo; Monica Canepari; Rosetta Rossi; Giuseppe D'Antona; Roberto Bottinelli; Carlo Reggiani; Francesco Mascarello

SUMMARY Little is known about the influence of Myosin Heavy Chain (MHC) isoforms on the contractile properties of single muscle fibres in large animals. We have studied MHC isoform composition and contractile properties of single muscle fibres from the pig. Masseter, diaphragm, longissimus, semitendinosus, rectractor bulbi and rectus lateralis were sampled in female pigs (aged 6 months, mass 160 kg). RT-PCR, histochemistry, immunohistochemistry and gel electrophoresis were combined to identify and separate four MHC isoforms: MHC-slow and three fast MHC (2A, 2X, 2B). Maximum shortening velocity (Vo) and isometric tension (Po) were measured in single muscle fibres with known MHC isoform composition. Six groups of fibres (pure: slow, 2A, 2X and 2B, and hybrid: 2A-2X and 2X-2B) with large differences in Vo and Po were identified. Slow fibres had mean Vo=0.17±0.01 length s-1 and Po=25.1±3.3 mN mm-2. For fast fibres 2A, 2X and 2B, mean Vo values were 1.86±0.18, 2.55±0.19 and 4.06±0.33 length s-1 and mean Po values 74.93±8.36, 66.85±7.58 and 32.96±7.47 mN mm-2, respectively. An in vitro motility assay confirmed that Vo strictly reflected the functional properties of the myosin isoforms. We conclude that pig muscles express high proportions of fast MHC isoforms, including MHC-2B, and that Vo values are higher than expected on the basis of the scaling relationship between contractile parameters and body size.


Human Molecular Genetics | 2010

Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy

Sara Menazza; Bert Blaauw; Tania Tiepolo; Luana Toniolo; Paola Braghetta; Barbara Spolaore; Carlo Reggiani; Fabio Di Lisa; Paolo Bonaldo; Marcella Canton

Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.


The Journal of Experimental Biology | 2005

Expression of eight distinct MHC isoforms in bovine striated muscles: evidence for MHC-2B presence only in extraocular muscles

Luana Toniolo; Lisa Maccatrozzo; Marco Vincenzo Patruno; F Caliaro; Francesco Mascarello; Carlo Reggiani

SUMMARY This study aimed to analyse the expression of myosin heavy chain (MHC) isoforms in bovine muscles, with particular attention to the MHC-2B gene. Diaphragm, longissimus dorsi, masseter, several laryngeal muscles and two extraocular muscles (rectus lateralis and retractor bulbi) were sampled in adult male Bos taurus (age 18-24 months, mass 400-500 kg) and analysed by RT-PCR, gel electrophoresis and immunohistochemistry. Transcripts and proteins corresponding to eight MHC isoforms were identified: MHC-α and MHC-β/slow (or MHC-1), two developmental isoforms (MHC-embryonic and MHC-neonatal), three adult fast isoforms (MHC-2A, MHC-2X and MHC-2B) and the extraocular isoform MHC-Eo. All eight MHC isoforms were found to be co-expressed in extrinsic eye muscles, retractor bulbi and rectus lateralis, four (β/slow, 2A, 2X, neonatal) in laryngeal muscles, three (β/slow, 2A and 2X) in trunk and limb muscles and two (β/slow and α) in masseter. The expression of MHC-2B and MHC-Eo was restricted to extraocular muscles. Developmental MHC isoforms (neonatal and embryonic) were only found in specialized muscles in the larynx and in the eye. MHC-α was only found in extraocular and masseter muscle. Single fibres dissected from masseter, diaphragm and longissimus were classified into five groups (expressing, respectively, β/slow, α, slow and 2A, 2A and 2X) on the basis of MHC isoform electrophoretical separation, and their contractile properties [maximum shortening velocity (v0) and isometric tension (P0)] were determined. v0 increased progressively from slow to fast 2A and fast 2X, whereas hybrid 1-2A fibres and fibres containing MHC-α were intermediate between slow and fast 2A.


FEBS Journal | 2005

Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles

Cyril Bozzo; Barbara Spolaore; Luana Toniolo; Laurence Stevens; Bruno Bastide; Caroline Cieniewski-Bernard; Angelo Fontana; Yvonne Mounier; Carlo Reggiani

Neural stimulation controls the contractile properties of skeletal muscle fibres through transcriptional regulation of a number of proteins, including myosin isoforms. To study whether neural stimulation is also involved in the control of post‐translational modifications of myosin, we analysed the phosphorylation of alkali myosin light chains (MLC1) and regulatory myosin light chains (MLC2) in rat slow (soleus) and fast (extensor digitorum longus EDL) muscles using 2D‐gel electrophoresis and mass spectrometry. In control rats, soleus and EDL muscles differed in the proportion of the fast and slow isoforms of MLC1 and MLC2 that they contained, and also in the distribution of the variants with distinct isoelectric points identified on 2D gels. Denervation induced a slow‐to‐fast transition in myosin isoforms and increased MLC2 phosphorylation in soleus, whereas the opposite changes in myosin isoform expression and MLC2 phosphorylation were observed in EDL. Chronic low‐frequency stimulation of EDL, with a pattern mimicking that of soleus, induced a fast‐to‐slow transition in myosin isoforms, accompanied by a decreased MLC2 phosphorylation. Chronic administration (10 mg·kg−1·d−1 intraperitoneally) of cyclosporin A, a known inhibitor of calcineurin, did not change significantly the distribution of fast and slow MLC2 isoforms or the phosphorylation of MLC2. All changes in MLC2 phosphorylation were paralleled by changes in MLC kinase expression without any variation of the phosphatase subunit, PP1. No variation in MLC1 phosphorylation was detectable after denervation or cyclosporin A administration. These results suggest that the low‐frequency neural discharge, typical of soleus, determines low levels of MLC2 phosphorylation together with expression of slow myosin, and that MLC2 phosphorylation is regulated by controlling MLC kinase expression through calcineurin‐independent pathways.


Journal of Applied Physiology | 2016

Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery.

Rado Pišot; Uros Marusic; Gianni Biolo; Sara Mazzucco; Stefano Lazzer; Bruno Grassi; Carlo Reggiani; Luana Toniolo; Angelina Passaro; Marco V. Narici; Shahid Mohammed; Joern Rittweger; Mladen Gasparini; Mojca Gabrijelčič Blenkuš; Boštjan Šimunič

This investigation aimed to compare the response of young and older adult men to bed rest (BR) and subsequent rehabilitation (R). Sixteen older (OM, age 55-65 yr) and seven young (YM, age 18-30 yr) men were exposed to a 14-day period of BR followed by 14 days of R. Quadriceps muscle volume (QVOL), force (QF), and explosive power (QP) of leg extensors; single-fiber isometric force (Fo); peak aerobic power (V̇o2peak); gait stride length; and three metabolic parameters, Matsuda index of insulin sensitivity, postprandial lipid curve, and homocysteine plasma level, were measured before and after BR and after R. Following BR, QVOL was smaller in OM (-8.3%) than in YM (-5.7%,P= 0.031); QF (-13.2%,P= 0.001), QP (-12.3%,P= 0.001), and gait stride length (-9.9%,P= 0.002) were smaller only in OM. Fo was significantly smaller in both YM (-32.0%) and OM (-16.4%) without significant differences between groups. V̇o2peakdecreased more in OM (-15.3%) than in YM (-7.6%,P< 0.001). Instead, the Matsuda index fell to a greater extent in YM than in OM (-46.0% vs. -19.8%, respectively,P= 0.003), whereas increases in postprandial lipid curve (+47.2%,P= 0.013) and homocysteine concentration (+26.3%,P= 0.027) were observed only in YM. Importantly, after R, the recovery of several parameters, among them QVOL, QP, and V̇o2peak, was not complete in OM, whereas Fo did not recover in either age group. The results show that the effect of inactivity on muscle mass and function is greater in OM, whereas metabolic alterations are greater in YM. Furthermore, these findings show that the recovery of preinactivity conditions is slower in OM.


Journal of Applied Physiology | 2011

Improved V̇O2 uptake kinetics and shift in muscle fiber type in high-altitude trekkers

Christian Doria; Luana Toniolo; Vittore Verratti; Pasqua Cancellara; Tiziana Pietrangelo; Valeria Marconi; Antonio Paoli; Silvia Pogliaghi; Giorgio Fanò; Carlo Reggiani; Carlo Capelli

The study investigated the effect of prolonged hypoxia on central [i.e., cardiovascular oxygen delivery (Q(a)O(2))] and peripheral (i.e., O(2) utilization) determinants of oxidative metabolism response during exercise in humans. To this aim, seven male mountaineers were examined before and immediately after the Himalayan Expedition Interamnia 8000-Manaslu 2008, lasting 43 days, among which, 23 days were above 5,000 m. The subjects showed a decrease in body weight (P < 0.05) and of power output during a Wingate Anaerobic test (P < 0.05) and an increase of thigh cross-sectional area (P < 0.05). Absolute maximal O(2) uptake (VO(2max)) did not change. The mean response time of VO(2) kinetics at the onset of step submaximal cycling exercise was reduced significantly from 53.8 s ± 10.9 to 39.8 s ± 10.9 (P < 0.05), whereas that of Q(a)O(2) was not. Analysis of single fibers dissected from vastus lateralis biopsies revealed that the expression of slow isoforms of both heavy and light myosin subunits increased, whereas that of fast isoforms decreased. Unloaded shortening velocity of fibers was decreased significantly. In summary, independent findings converge in indicating that adaptation to chronic hypoxia brings about a fast-to-slow transition of muscle fibers, resulting in a faster activation of the mitochondrial oxidative metabolism. These results indicate that a prolonged and active sojourn in hypoxia may induce muscular ultrastructural and functional changes similar to those observed after aerobic training.


American Journal of Physiology-cell Physiology | 2008

Masticatory myosin unveiled: first determination of contractile parameters of muscle fibers from carnivore jaw muscles

Luana Toniolo; Pasqua Cancellara; Lisa Maccatrozzo; Marco Vincenzo Patruno; Francesco Mascarello; Carlo Reggiani

Masticatory myosin heavy chain (M MyHC) is a myosin subunit isoform with expression restricted to muscles derived from the first branchial arch, such as jaw-closer muscles, with pronounced interspecies variability. Only sparse information is available on the contractile properties of muscle fibers expressing M MyHC (M fibers). In this study, we characterized M fibers isolated from the jaw-closer muscles (temporalis and masseter) of two species of domestic carnivores, the cat and the dog, compared with fibers expressing slow or fast (2A, 2X, and 2B) isoforms. In each fiber, during maximally calcium-activated contractions at 12 degrees C, we determined isometric-specific tension (P(o)), unloaded shortening velocity (v(o)) with the slack test protocol, and the rate constant of tension redevelopment (K(TR)) after a fast shortening-relengthening cycle. At the end of the mechanical experiment, we identified MyHC isoform composition of each fiber with gel electrophoresis. Electrophoretic migration rate of M MyHC was similar in both species. We found that in both species the kinetic parameters v(o) and K(TR) of M fibers were similar to those of 2A fibers, whereas P(o) values were significantly greater than in any other fiber types. The similarity between 2A and M fibers and the greater tension development of M fibers were confirmed also in mechanical experiments performed at 24 degrees C. Myosin concentration was determined in single fibers and found not different in M fibers compared with slow and fast fibers, suggesting that the higher tension developed by M fibers does not find an explanation in a greater number of force generators. The specific mechanical characteristics of M fibers might be attributed to a diversity in cross-bridge kinetics.


Journal of Applied Physiology | 2010

Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy

Bert Blaauw; Lisa Agatea; Luana Toniolo; Marta Canato; Marco Quarta; Kenneth A. Dyar; Daniela Danieli-Betto; Romeo Betto; Stefano Schiaffino; Carlo Reggiani

It is commonly accepted that skeletal muscles from dystrophin-deficient mdx mice are more susceptible than those from wild-type mice to damage from eccentric contractions. However, the downstream mechanisms involved in this enhanced force drop remain controversial. We studied the reduction of contractile force induced by eccentric contractions elicited in vivo in the gastrocnemius muscle of wild-type mice and three distinct models of muscle dystrophy: mdx, alpha-sarcoglycan (Sgca)-null, and collagen 6A1 (Col6a1)-null mice. In mdx and Sgca-null mice, force decreased 35% compared with 14% in wild-type mice. Drop of force in Col6a1-null mice was comparable to that in wild-type mice. To identify the determinants of the force drop, we measured force generation in permeabilized fibers dissected from gastrocnemius muscle that had been exposed in vivo to eccentric contractions and from the contralateral unstimulated muscle. A force loss in skinned fibers after in vivo eccentric contractions was detectable in fibers from mdx and Sgca-null, but not wild-type and Col6a1-null, mice. The enhanced force reduction in mdx and Sgca-null mice was observed only when eccentric contractions were elicited in vivo, since eccentric contractions elicited in vitro had identical effects in wild-type and dystrophic skinned fibers. These results suggest that 1) the enhanced force loss is due to a myofibrillar impairment that is present in all fibers, and not to individual fiber degeneration, and 2) the mechanism causing the enhanced force reduction is active in vivo and is lost after fiber permeabilization.

Collaboration


Dive into the Luana Toniolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiziana Pietrangelo

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge