Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luba Kalaydjieva is active.

Publication


Featured researches published by Luba Kalaydjieva.


American Journal of Human Genetics | 1999

A Genomic Screen of Autism: Evidence for a Multilocus Etiology

Neil Risch; Donna Spiker; Linda Lotspeich; Nassim Nouri; David A. Hinds; Joachim Hallmayer; Luba Kalaydjieva; Patty McCague; Sue Dimiceli; Tawna Pitts; Loan Nguyen; Joan Yang; Courtney Harper; Danielle Thorpe; Saritha Vermeer; Helena Young; Joan M. Hebert; Alice Lin; Joan Ferguson; Carla Chiotti; Susan Wiese‐Slater; Tamara Rogers; Boyd Salmon; Peter Nicholas; P. Brent Petersen; Carmen Pingree; William M. McMahon; Dona L. Wong; Luigi Luca Cavalli-Sforza; Helena C. Kraemer

We have conducted a genome screen of autism, by linkage analysis in an initial set of 90 multiplex sibships, with parents, containing 97 independent affected sib pairs (ASPs), with follow-up in 49 additional multiplex sibships, containing 50 ASPs. In total, 519 markers were genotyped, including 362 for the initial screen, and an additional 157 were genotyped in the follow-up. As a control, we also included in the analysis unaffected sibs, which provided 51 discordant sib pairs (DSPs) for the initial screen and 29 for the follow-up. In the initial phase of the work, we observed increased identity by descent (IBD) in the ASPs (sharing of 51.6%) compared with the DSPs (sharing of 50.8%). The excess sharing in the ASPs could not be attributed to the effect of a small number of loci but, rather, was due to the modest increase in the entire distribution of IBD. These results are most compatible with a model specifying a large number of loci (perhaps >/=15) and are less compatible with models specifying </=10 loci. The largest LOD score obtained in the initial scan was for a marker on chromosome 1p; this region also showed positive sharing in the replication family set, giving a maximum multipoint LOD score of 2.15 for both sets combined. Thus, there may exist a gene of moderate effect in this region. We had only modestly positive or negative linkage evidence in candidate regions identified in other studies. Our results suggest that positional cloning of susceptibility loci by linkage analysis may be a formidable task and that other approaches may be necessary.


American Journal of Human Genetics | 2000

Y-Chromosomal Diversity in Europe Is Clinal and Influenced Primarily by Geography, Rather than by Language

Zoë H. Rosser; Tatiana Zerjal; Matthew E. Hurles; Maarja Adojaan; Dragan Alavantic; António Amorim; William Amos; Manuel Armenteros; Eduardo Arroyo; Guido Barbujani; G. Beckman; L. Beckman; Jaume Bertranpetit; Elena Bosch; Daniel G. Bradley; Gaute Brede; Gillian Cooper; Helena B.S.M. Côrte-Real; Peter de Knijff; Ronny Decorte; Yuri E. Dubrova; Oleg V. Evgrafov; Anja Gilissen; Sanja Glisic; Mukaddes Gölge; Emmeline W. Hill; Anna Jeziorowska; Luba Kalaydjieva; Manfred Kayser; Toomas Kivisild

Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.


American Journal of Human Genetics | 1998

Dating the Origin of the CCR5-Δ32 AIDS-Resistance Allele by the Coalescence of Haplotypes

J. Claiborne Stephens; David Reich; David B. Goldstein; Hyoung Doo Shin; Michael W. Smith; Mary Carrington; Cheryl A. Winkler; Gavin A. Huttley; Rando Allikmets; Lynn M. Schriml; Bernard Gerrard; Michael Malasky; Maria D. Ramos; Susanne Morlot; Maria Tzetis; Carole Oddoux; Francesco S. di Giovine; Georgios Nasioulas; David Chandler; Michael Aseev; Matthew Hanson; Luba Kalaydjieva; Damjan Glavač; Paolo Gasparini; Emmanuel Kanavakis; Mireille Claustres; Marios Kambouris; Harry Ostrer; Gw Duff; V. S. Baranov

The CCR5-Delta32 deletion obliterates the CCR5 chemokine and the human immunodeficiency virus (HIV)-1 coreceptor on lymphoid cells, leading to strong resistance against HIV-1 infection and AIDS. A genotype survey of 4,166 individuals revealed a cline of CCR5-Delta32 allele frequencies of 0%-14% across Eurasia, whereas the variant is absent among native African, American Indian, and East Asian ethnic groups. Haplotype analysis of 192 Caucasian chromosomes revealed strong linkage disequilibrium between CCR5 and two microsatellite loci. By use of coalescence theory to interpret modern haplotype genealogy, we estimate the origin of the CCR5-Delta32-containing ancestral haplotype to be approximately 700 years ago, with an estimated range of 275-1,875 years. The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event (e.g. , an epidemic of a pathogen that, like HIV-1, utilizes CCR5), driving its frequency upward in ancestral Caucasian populations.


American Journal of Human Genetics | 2000

N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom

Luba Kalaydjieva; David Gresham; Rebecca Gooding; Lisa Heather; Frank Baas; Rosalein R de Jonge; Karin Blechschmidt; Dora Angelicheva; David Chandler; Penelope Worsley; André Rosenthal; Rosalind King; P.K. Thomas

Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy–Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.


American Journal of Human Genetics | 2001

Origins and Divergence of the Roma (Gypsies)

David Gresham; Bharti Morar; Peter A. Underhill; Giuseppe Passarino; Alice A. Lin; Cheryl Wise; Dora Angelicheva; Francesc Calafell; Peter J. Oefner; Peidong Shen; Ivailo Tournev; Rosario de Pablo; Vaidutis Kuĉinskas; Anna Pérez-Lezaun; Elena Marushiakova; Vesselin Popov; Luba Kalaydjieva

The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.


Annals of Human Genetics | 1996

From Asia to Europe: mitochondrial DNA sequence variability in Bulgarians and Turks

F. Calafell; Peter A. Underhill; Aslıhan Tolun; D. Angelicheva; Luba Kalaydjieva

Two hypervariable sequence segments in the control region of mitochondrial DNA were determined in samples of Bulgarians and Turks. The Turkish sample presented a higher degree of internal diversity, in terms of total number of variable nucleotides, as well as in the average pairwise nucleotide difference. Pairwise difference distributions were built for both samples, yielding smooth bell shapes in agreement with the Rogers and Harpending model. The Bulgarian and Turkish data were compared with several European and W. Asian Caucasoid populations (Basques, Tuscans, Sardinians, British, Middle Easterners and Indians). Mean pairwise differences suggest that a demographic expansion occurred sequentially in the Middle East, through Turkey, to the rest of Europe (Bulgaria included). Current mutation rate estimates date this expansion in times ranging between 50000 and 100000 years ago and, thus, would correspond to the arrival of anatomically modern humans in Europe. Sequence trees for segment I show that European and Middle Eastern sequences derived from the reference sequence. Coalescence times for segment I sequences agree with those predicted by pairwise distributions. Genetic trees were constructed between populations and revealed an extreme homogeneity between European samples.


BMC Medical Genetics | 2001

Genetic studies of the Roma (Gypsies): a review

Luba Kalaydjieva; David Gresham; Francesc Calafell

BackgroundData provided by the social sciences as well as genetic research suggest that the 8-10 million Roma (Gypsies) who live in Europe today are best described as a conglomerate of genetically isolated founder populations. The relationship between the traditional social structure observed by the Roma, where the Group is the primary unit, and the boundaries, demographic history and biological relatedness of the diverse founder populations appears complex and has not been addressed by population genetic studies.ResultsRecent medical genetic research has identified a number of novel, or previously known but rare conditions, caused by private founder mutations. A summary of the findings, provided in this review, should assist diagnosis and counselling in affected families, and promote future collaborative research. The available incomplete epidemiological data suggest a non-random distribution of disease-causing mutations among Romani groups.ConclusionAlthough far from systematic, the published information indicates that medical genetics has an important role to play in improving the health of this underprivileged and forgotten people of Europe. Reported carrier rates for some Mendelian disorders are in the range of 5 -15%, sufficient to justify newborn screening and early treatment, or community-based education and carrier testing programs for disorders where no therapy is currently available. To be most productive, future studies of the epidemiology of single gene disorders should take social organisation and cultural anthropology into consideration, thus allowing the targeting of public health programs and contributing to the understanding of population structure and demographic history of the Roma.


Human Mutation | 1997

SSCP Analysis: A Blind Sensitivity Trial

Albena Jordanova; Luba Kalaydjieva; Alexey Savov; Mireille Claustres; Martin Schwarz; Xavier Estivill; Dora Angelicheva; Andrea Haworth; Teresa Casals; Ivo Kremensky

Studies of the sensitivity of SSCP analysis usually have been performed under conditions contrary to the rules of quality control trials and have produced widely different results. We have performed a blind trial of the sensitivity of SSCP analysis for the detection of mutations in fragments up to 500 bp in length under a fixed single set of electrophoretic conditions. The mutation detection rate was 84%. In addition, we have identified a second mutation in nine samples. All these mutations are polymorphisms, including a novel polymorphism 1248+52T/C first reported in the present work. Hum Mutat 10:65–70, 1997.


Annals of Neurology | 1999

Hereditary auditory, vestibular, motor, and sensory neuropathy in a Slovenian Roma (Gypsy) kindred

Dušan Butinar; Janez Zidar; Lea Leonardis; Mara Popović; Luba Kalaydjieva; Dora Angelicheva; Yvonne S. Sininger; Bronya Keats; Arnold Starr

Members of a Roma (Gypsy) family with hereditary motor and sensory peripheral neuropathy (HMSN) and concomitant auditory and vestibular cranial neuropathies were identified in Kocevje, Slovenia. The illness begins in childhood with a severe and progressive motor disability and the deafness is delayed until the second decade. There are no symptoms of vestibular dysfunction. The family structure is consistent with an autosomal recessive pattern of inheritance and the genetic locus for the disorder is linked to the same region of chromosome 8q24 as other Roma families with HMSN and deafness from Lom, Bulgaria (HMSN‐Lom). The present study shows that the deafness is caused by a neuropathy of the auditory nerve with preserved measures of cochlear outer hair cell function (otoacoustic emissions and cochlear microphonics) but absent neural components of auditory brainstem potentials. The hearing loss affects speech comprehension out of proportion to the pure tone loss. Vestibular testing showed absence of caloric responses. Physiological and neuropathological studies of peripheral nerves were compatible with the nerve disorder contemporaneously affecting Schwann cells and axons resulting in both slowed nerve conduction and axonal loss. Genetic linkage studies suggest a refinement of the 8q24 critical region containing the HMSN‐Lom locus that affects peripheral motor and sensory nerves as well as the cranial auditory and vestibular nerves. Ann Neurol 1999;46:36–44


Human Genetics | 1995

Genetic heterogeneity of polycystic kidney disease in Bulgaria

Nadia Bogdanova; Bernd Dworniczak; D. Dragova; Vassil Todorov; Dimitar Dimitrakov; K. Kalinov; Joachim Hallmayer; Jürgen Horst; Luba Kalaydjieva

Linkage analysis was performed on 22 Bulgarian families with polycystic kidney disease (PKD) ascertained through the hemodialysis centers of two medical schools. A total of 128 affected and 59 unaffected individuals, and 54 spouses have been investigated using eight polymorphic markers linked to PKD1 and nine markers to PKD2. The results demonstrate locus heterogeneity with 0.67 as the maximum likelihood value of alpha, i.e., the proportion of families linked to PKD1. In five families, the results suggest linkage to PKD2, and observed recombinants place the gene between loci D4S1544 and D4S1542. In one family, two double recombinants for closely linked markers on chromosome 16 and on chromosome 4 give evidence for the lack of link-age to either PKD1 or PKD2, thus suggesting the involvement of a third locus. Analysis of clinical data in the PKD1 group versus the unlinked group shows no significant differences in the severity of the disease.

Collaboration


Dive into the Luba Kalaydjieva's collaboration.

Top Co-Authors

Avatar

Dora Angelicheva

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ivailo Tournev

New Bulgarian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Novelli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Chandler

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge