Ľubomír Smrčok
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ľubomír Smrčok.
Nature Communications | 2014
Pascal Schouwink; Morten B. Ley; Antoine Tissot; Hans Hagemann; Torben R. Jensen; Ľubomír Smrčok; Radovan Černý
Perovskite materials host an incredible variety of functionalities. Although the lightest element, hydrogen, is rarely encountered in oxide perovskite lattices, it was recently observed as the hydride anion H(-), substituting for the oxide anion in BaTiO3. Here we present a series of 30 new complex hydride perovskite-type materials, based on the non-spherical tetrahydroborate anion BH4(-) and new synthesis protocols involving rare-earth elements. Photophysical, electronic and hydrogen storage properties are discussed, along with counterintuitive trends in structural behaviour. The electronic structure is investigated theoretically with density functional theory solid-state calculations. BH4-specific anion dynamics are introduced to perovskites, mediating mechanisms that freeze lattice instabilities and generate supercells of up to 16 × the unit cell volume in AB(BH4)3. In this view, homopolar hydridic di-hydrogen contacts arise as a potential tool with which to tailor crystal symmetries, thus merging concepts of molecular chemistry with ceramic-like host lattices. Furthermore, anion mixing BH4(-)←X(-) (X(-)=Cl(-), Br(-), I(-)) provides a link to the known ABX3 halides.
Acta Crystallographica Section B-structural Science | 2006
Ľubomír Smrčok; Mariana Sládkovičová; Vratislav Langer; Chick C. Wilson; Miroslav Koóš
The geometry of hydrogen bonds in 1,6-anhydro-beta-D-glucopyranose (levoglucosan) is accurately determined by refinement of time-of-flight neutron single-crystal diffraction data. Molecules of levoglucosan are held together by a hydrogen-bond array formed by a combination of strong O-H...O and supporting weaker C-H...O bonds. These are fully and accurately detailed by the neutron diffraction study. The strong hydrogen bonds link molecules in finite chains, with hydroxyl O atoms acting as both donors and acceptors of hydroxyl H atoms. A comparison of molecular and solid-state DFT calculations predicts red shifts of O-H and associated blue shifts of C-H stretching frequencies due to the formation of hydrogen bonds in this system.
Acta Crystallographica Section C-crystal Structure Communications | 2010
Ľubomír Smrčok; Radovan Černý; Miroslav Boča; Iveta Macková; Blanka Kubíková
The crystal structure of tripotassium octafluoridotantalate, K(3)TaF(8), determined from laboratory powder diffraction data by the simulated annealing method and refined by total energy minimization in the solid state, is built from discrete potassium cations, fluoride anions and monocapped trigonal-prismatic [TaF(7)](2-) ions. All six atoms in the asymmetric unit are in special positions of the P6(3)mc space group: the Ta and one F atom in the 2b (3m) sites, the K and two F atoms in the 6c (m) sites, and one F atom in the 2a (3m) site. The structure consists of face-sharing K(6) octahedra with a fluoride anion at the center of each octahedron, forming chains of composition [FK(3)](2+) running along [001] with isolated [TaF(7)](2-) trigonal prisms in between. The structure of the title compound is different from the reported structure of Na(3)TaF(8) and represents a new structure type.
Central European Journal of Chemistry | 2008
Ladislav Kosa; Iveta Macková; Ivo Proks; Ondrej Pritula; Ľubomír Smrčok; Miroslav Boča; Håkan Rundlőf
Three thermal effects on heating/cooling of K2TaF7 in the temperature interval of 680–800°C were investigated by the DSC method. The values determined for the enthalpy change of the individual processes are: ΔtransIIHm(K2TaF7; 703°C) = 1.7(2) kJ mol−1, ΔtransIHm(K2TaF7; 746°C) = 19(1) kJ mol−1 and ΔtransIIIHm(K2TaF7; 771°C) = 13(1) kJ mol−1. The first thermal effect was attributed to a solid-solid phase transition; the second to the incongruent melting of K2TaF7 and the third to mixing of two liquids. These findings are supported by in situ neutron powder diffraction experiments performed in the temperature interval of 654–794°C.
Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2014
Pascal Schouwink; Ľubomír Smrčok; Radovan Černý
The phase diagram LiBH4-ABH4 (A = Rb,Cs) has been screened and revealed ten new compounds LiiAj(BH4)i+j (A = Rb, Cs), with i, j ranging between 1 and 3, representing eight new structure types amongst homoleptic borohydrides. An approach based on synchrotron X-ray powder diffraction to solve crystal structures and solid-state first principles calculations to refine atomic positions allows characterizing multi-phase ball-milled samples. The Li-BH4 substructure adopts various topologies as a function of the compounds Li content, ranging from one-dimensional isolated chains to three-dimensional networks. It is revealed that the Li(+) ion has potential as a surprisingly versatile cation participating in framework building with the tetrahydroborate anion BH4 as a linker, if the framework is stabilized by large electropositive counter-cations. This utility can be of interest when designing novel hydridic frameworks based on alkaline metals and will be of use when exploring the structural and coordination chemistry of light-metal systems otherwise subject to eutectic melting.
Acta Crystallographica Section B-structural Science | 2007
Ľubomír Smrčok; Vladimír Jorík; Eva Scholtzová; Viktor Milata
The crystal structure of the title compound was solved from laboratory powder diffraction data in the triclinic group P\bar 1 by simulated annealing using the program DASH. Since Rietveld refinements yielded inaccurate geometries the structure was finally refined by geometry optimization using energy minimization in the solid state with the DFT/plane-waves approach. The molecule is essentially planar and its Meldrums acid moiety (2,2-dimethyl-1,3-dioxane-4,6-dione) has a flattened boat conformation. The bond orders in the molecule estimated using a natural bond-orbitals formalism correlate with the optimized bond lengths. The structure in the solid state is based on dimer units in which the molecules are held by N-H...O and C-H...O hydrogen bonds in addition to electrostatic interactions. These units interact through weak C-H...O hydrogen bonds. It is suggested that structure refinement by energy minimization at the DFT level of theory may in many cases successfully replace Rietveld refinement.
Powder Diffraction | 1999
Ľubomír Smrčok; Marián Ďurı́k; Vladimír Jorík
Four powder diffraction patterns taken under different experimental conditions were denoised by a new method, i.e., thresholding of wavelet coefficients. The patterns were transformed by discrete wavelet transform applying Coiflet4 wavelet function. WLS refinements of peaks’ positions, FWHM, and intensity showed that wavelet denoising, in contrast to previously used polynomial smoothing, did not shift the maxima and preserved peak and integrated intensities. This method may therefore represent an useful alternative to polynomial filters or filters based on Fourier transform.
Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2013
Ľubomír Smrčok; Pavel Mach; Armel Le Bail
The crystal structure of 1,2,3,3,4,4,5,5,6,6-decafluorocyclohex-1-ene (decafluorocyclohex-1-ene, C6F10) was solved in direct space from neutron powder diffraction data previously collected at 4.2 K [Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361] and refined by energy minimization in the solid state. To optimize the positions of the 64 atoms in the monoclinic computational cell the PBESOL and hybrid PBE0 functionals were used. The crystal structure of the title compound, which is liquid at room temperature, is built of antiparallel pairs of molecules assembled into molecular columns stacked along the a axis. Dominating the crystal-building forces are weak intermolecular dispersion interactions. Bonding conditions in the structure were analysed by theoretical molecular calculations of representative next-neighbor molecular dimers carried out using dispersion-corrected density functional theory (DFT) functionals and the SCS-MP2 wavefunction method. The largest interaction energy is of the order of ∼ 21 kJ mol(-1), above the interaction energy of a benzene dimer (11.3 kJ mol(-1)) and close to that of a water dimer (20.9 kJ mol(-1)). The interaction energy for the second most stable dimer can be compared with either that of a benzene dimer or of a C-H...π hydrogen bond. The remaining five weakly interacting dimers (∼ 4.2-8.4 kJ mol(-1)) can be characterized as having stronger interactions than those of methane dimers (-2.2 kJ mol(-1)), but weaker than those of benzene molecule pairs or weak C-H...C interactions for instance.
Physics and Chemistry of Minerals | 1994
Ľ. Benco; Ľubomír Smrčok
Periodic ab initio Hartree-Fock LCAO calculations have been carried out on the two dimensional sheet of SiO4 tetrahedra, representing one of the basic constituting units of layer silicates, using Huzinagas DZP basis sets. The influence of the basis set on the chemical bonding picture is characterized by Mulliken atomic charges and by electron density maps. Silicon atomic charges ∼ +1.6 ¦e¦ are more realistic than those ∼ +2.4 ¦e¦ reported for smaller basis sets. The silicon d orbital population is found to be 0.6 in close agreement with molecular data. Electron density maps indicate the absence of charge density in the center of the ditrigonal cavity. The charge buildup of nonbonding basal oxygen orbitals is directed mainly downwards perpendicular to the sheet plane.
Central European Journal of Chemistry | 2013
Mária Šimuneková; Peter Schwendt; Jana Chrappová; Ľubomír Smrčok; Radovan Černý; Wouter van Beek
AbstractThe first transition metal iodato peroxido complex, K3[V2O2(O2)4(IO3)]·H2O (I), was prepared by crystallization from the KVO3 — KIO3 — H2O2 — H2O — ethanol (HNO3) solution. The dinuclear anion is immediately decomposed in aqueous solution; the 51V NMR spectrum exhibits signals corresponding to [VO(O2)2(H2O)]−, [V2O2(OH)(O2)4]3− and H2VO4− species only. The IR and Raman spectra contain all characteristic bands of the VO(O2)2 group and the coordinated IO3− ligand. Based on the positions of bands assigned to the vibrations of the VO(O2)2 groups a pentagonal pyramidal arrangement around the vanadium atoms can be supposed. The crystal structure was solved from X-ray synchrotron powder data by direct space method and refined by energy minimization in the solid state employing a hybrid PBE0 functional. This crystal and molecular structure, has confirmed the presence of hexacoordinated vanadium atoms and revealed asymmetric dinuclear structure of the [V2O2(O2)4(IO3)]3− ion. The coordination spheres of vanadium atoms are different — the IO3− anion is coordinated only to one vanadium center. A thermal analysis of the complex confirmed the presence of water molecules in the crystal structure and revealed a considerable stability of the dehydrated complex.