Luc Dendooven
CINVESTAV
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Dendooven.
Critical Reviews in Plant Sciences | 2009
Bram Govaerts; Nele Verhulst; A. Castellanos-Navarrete; Ken D. Sayre; John Dixon; Luc Dendooven
Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of todays farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention, and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture; summarizing the influence of tillage, residue management, and crop rotation on soil organic carbon stocks; and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher, and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished, e.g., root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position, and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces production cost.
Bioresource Technology | 2002
E Ramirez-Fuentes; C Lucho-Constantino; E Escamilla-Silva; Luc Dendooven
Irrigation of agricultural land with wastewater will increase crop production, but also heavy metal concentrations and the rate of infection of farmers with pathogens. The risks associated with the use of wastewater are reduced by treating the wastewater, but treatment also reduces organic material, phosphorus and inorganic N for crops. We investigated characteristics, e.g. heavy metal concentrations, of soils of the valley of the Mezquital (Mexico) irrigated with waste from Mexico City water since 1912, 1925, 1965, 1976, 1996 or 1997, or not irrigated at all, and dynamics of C and N when soil was amended with wastewater or drainage water. Concentrations of total Mg, Hg, Mo, Ca, Cu and Cr, available concentrations of Pb, Cd and Cu increased significantly with length of irrigation (P < 0.05), but were not at hazardous concentrations. Although organic C, total N, microbial biomass C and N, and microbial activity, as witnessed by CO2 production, increased with length of irrigation, N mineralization did not. Oxidation of NO2- was inhibited and could be due to increases in salinity, toxic compounds or heavy metals. We found that N mineralization was low or absent so it will not compensate for the loss of N when the wastewater is treated and application of N fertilizer will be required to maintain the same level of crop production. The characteristics of the soils appear not to have deteriorated after years of application of wastewater, but further irrigation even with treated wastewater might increase sodicity and salinity and pose a threat to future crop production.
Environmental Science and Pollution Research | 2011
Fabián Fernández-Luqueño; C. Valenzuela-Encinas; Rodolfo Marsch; C. Martínez-Suárez; E. Vázquez-Núñez; Luc Dendooven
Background, aim, and scopeAlthough highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges.Discussion and conclusionsMicroorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism–microorganism, microorganism–plant, microorganism–soil, and microorganisms–PAHs.PerspectivesElucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remediate PAHs-contaminated soil.
Biology and Fertility of Soils | 2005
S. M. Contreras-Ramos; E. M. Escamilla-Silva; Luc Dendooven
Biosolids, mainly from textile industries and the rest from households, were vermicomposted with Eisenia fetida, cow manure and oat straw for 2 months at three different moisture contents (60%, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida. The vermicompost with the best stability and maturity and a weight loss of 18% was obtained with 1,800 g biosolid, no straw and 800 g manure at 70% water content. This vermicompost had the following properties: pH 7.9; organic C content of 163 g kg−1; an electrolytic conductivity of 11 mS cm−1; a humic-to-fulvic acid ratio of 0.5 (HA/FA); total N content of 9 g kg−1; water soluble C (Cw) less than 0.5%; cation exchange capacity of 41 cmolc kg−1; a respiration rate of 188 mg CO2-C kg−1 compost-C day−1; a NO3−/CO2 ratio greater than 8; and a NH4+/NO3− ratio lower than 0.16. The vermicompost gave a germination index for cress (Lepidium sativum) of 80% after 2 months while the earthworm production increased 1.2-fold and volatile solids decreased five times. In addition, the vermicompost contained less than 3 CFU g−1Salmonella spp., no fecal coliforms and Shigella spp. and no eggs of helminths. Concentration of sodium was 152 mg kg−1 dry compost, while concentrations of chromium, copper, zinc and lead were below the limits established by the USEPA.
Applied and Environmental Microbiology | 2010
Javier A. Ceja-Navarro; Flor N. Rivera-Orduña; Leonardo Patiño-Zúñiga; Antón Vila-Sanjurjo; José Crossa; Bram Govaerts; Luc Dendooven
ABSTRACT Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (−R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/−R). Zero-tillage treatments (ZT/+R and ZT/−R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities.
Journal of Biotechnology | 2000
Luc Dendooven; I. P. Magaña; M. de la Torre
An orthogonal experimental design L9 (3(4)) was used to investigate effects of temperature, pH, C:N ratio (glucose-C, NH4Cl-N) and concentrations of rice flour on production of gibberellic acid by Gibberella fujikuroi in 3.5 l fluidized bioreactors. The gibberellic acid production in a fluidized bioreactor could reach 3.90 g l(-1), more than 3-times greater than previously reported for submerged and solid fermentations. pH, rice flour concentration and C:N ratio were the factors that most influenced the production of gibberellic acid; pH being the most important. The response surface of gibberellic acid production to changes in pH and C:N ratio or rice flour concentration indicated that greatest production was found with a C:N ratio of 36.8 and pH 5 while the optimum concentration for rice flour was 2 g l(-1) and production increased with increased pH. The effect of temperature on the production of gibberellic acid was also significant and greatest production was at 30 degrees C.
Plant and Soil | 2008
Kelly Lichter; Bram Govaerts; Johan Six; Ken D. Sayre; Jozef Deckers; Luc Dendooven
Permanent raised bed planting with crop residue retention is a form of conservation agriculture that has been proposed as an alternative to conventional tillage for wheat production systems in the Central Highlands of Mexico. A field experiment comparing permanent and tilled raised beds with different residue management under rainfed conditions was started at El Batán (State of Mexico, Mexico) in 1999. The percentage of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full crop residue retention (average for maize and wheat), while the percentages free microaggregates was lower. The percentages of small and large macroaggregates and mean weight diameter (MWD) was significantly larger in permanent raised beds with residue retention compared to permanent raised beds with removal of the residue (average for maize and wheat), while the percentages free microaggregates and silt and clay fraction was lower. Cultivation of maize significantly reduced the large macroaggregates, while wheat reduced the silt and clay fraction (average over all systems). Cultivation of maize reduced the C and N content of the free microaggregates compared to soil cultivated with wheat, while removal of plant residue reduced the C and N content of the silt and clay fraction compared to soil where residue was retained. The C and N content of the coarse particulate organic matter (cPOM) and microaggregates within the macroaggregates was significantly larger in permanent raised beds compared to conventionally tilled raised beds both with full residue retention, while C and N content of the cPOM was significantly lower when residue was removed or partially removed compared to the soil where the residue was retained. The δ13C ‰ signatures of the macroaggregates, microaggregates, the silt and clay fraction, cPOM and microaggregates within the macroaggregates were not affected by tillage or residue management when wheat was the last crop, but removal of residue reduced the δ13C ‰ signatures of the macro-, microaggregates and microaggregates within the macroaggregates significantly compared to soil where the residue was retained. Retaining only 30–50% of the organic residue still improved the soil structure considerably compared to plots where it was removed completely. Permanent raised beds without residue retention, however, is a practice leading to soil degradation.
Mycorrhiza | 2006
Hortencia Gabriela Mena-Violante; Omar Ocampo-Jiménez; Luc Dendooven; Gerardo Martínez-Soto; Jaquelina González-Castañeda; Fred T. Davies; Víctor Olalde-Portugal
The effect of arbuscular mycorrhizal fungi (AMF) and drought on fruit quality was evaluated in chile ancho (Capsicum annuum L. cv San Luis). AMF treatments were (1) Glomus fasciculatum (AMFG), (2) a fungal species consortium from the forest “Los Tuxtla” in Mexico (AMFT), (3) a fungal species consortium from the Sonorian desert in Mexico (AMFD), and (4) a noninoculated control (NAMF). Plants were exposed to a 26-day drought cycle. Fruit quality was determined by measuring size (length, width, and pedicel length), color, chlorophyll, and carotenoid concentration. Under nondrought conditions, AMFG produced fruits that were 13% wider and 15% longer than the NAMF treatment. Under nondrought conditions, fruit fresh weight was 25% greater in the AMFG treatment compared to the NAMF. Under drought, fruits in the AMFT and AMFD treatments showed fresh weights similar to those in the NAMF treatment not subjected to drought. Fruits of the AMFG treatment subjected to drought showed the same color intensity and chlorophyll content as those of the nondroughted NAMF treatment and carotenoid content increased 1.4 times compared to that in the NAMF not exposed to drought. It is interesting to note that fruits in the AMFD treatment subjected to drought and the NAMF treatment not exposed to drought reached the same size. AMFD treatment increased the concentration of carotenes (1.4 times) under nondrought conditions and the concentration of xanthophylls (1.5 times) under drought when compared to the nondroughted NAMF treatment.
Biology and Fertility of Soils | 1998
Luc Dendooven; E Bonhomme; Roel Merckx; Karel Vlassak
Abstract Carbon (C) and Nitrogen dynamics and sources of nitrous oxide (N2O) production were investigated in a loamy soil amended with pig slurry. Pig slurry (40000kgha–1) or distilled H2O was applied to intact soil cores of the upper 5cm of a loamy soil which were incubated under aerobic conditions for 28 days at 25°C. Treatments were with or without acetylene (C2H2), which is assumed to inhibit the reduction of N2O to dinitrogen (N2), and with or without dicyandiamide (DCD), which is thought to inhibit nitrification. Volatilization of ammonia (NH3), pH, carbon dioxide (CO2) and N2O production, and ammonium (NH4+) and nitrate NO3–) concentrations were monitored. The pH of the pig slurry amended soil increased from an initial value of 7.1 to pH 8.3 within 3 days; it then decreased slowly but was still at a value of 7.4 after 28 days. Twenty percent of the NH4+ applied volatilized within 28 days. Sixty percent of the C applied in the pig slurry evolved as CO2, if no priming effect was assumed, but only 38% evolved when the soil was amended with DCD. Pig slurry significantly increased denitrification and the ratio between its gaseous products, N2O and N2, was 0.21. No significant increases in NO3– concentration occurred, and N2O produced through nitrification was 0.07mg N2O-N kg–1 day–1 or 33% of the total N2O produced. C2H2 was used as a C substrate by microorganisms and increased the production of N2O.
Pedosphere | 2014
N. Serrano-Silva; Y. Sarria-Guzmán; Luc Dendooven; Marco Luna-Guido
Abstract Global warming, as a result of an increase in the mean temperature of the planet, might lead to catastrophic events for humanity. This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases (GHG) concentration. Water vapor, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) are the most important GHG, and human activities, such as industry, livestock and agriculture, contribute to the production of these gases. Methane, at an atmospheric concentration of 1.7 μmol mol −1 currently, is responsible for 16% of the global warming due to its relatively high global warming potential. Soils play an important role in the CH 4 cycle as methanotrophy (oxidation of CH 4 ) and methanogenesis (production of CH 4 ) take place in them. Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG. The current knowledge of methanogenesis and methanotrophy in soils, anaerobic CH 4 oxidation and methanotrophy in extreme environments is also discussed.