Luc F. Bussière
University of Stirling
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc F. Bussière.
Nature | 2004
John Hunt; Robert Brooks; Michael D. Jennions; Michael J. Smith; Caroline L. Bentsen; Luc F. Bussière
Only high-quality males can bear the costs of an extreme sexual display. As a consequence, such males are not only more attractive, but they often live longer than average. Recent theory predicts, however, that high-quality males should sometimes invest so heavily in sexual displays that they die sooner than lower quality males. We manipulated the phenotypic quality of field crickets, Teleogryllus commodus, by altering the protein content of their diet. Here we show that nymphs and adult females reared on a high-protein diet lived longer than those on a low-protein diet. In contrast, adult males reared on a high-protein diet died sooner than those on low-protein diets because they invested more energy in calling during early adulthood. Our findings uphold the theoretical prediction that the relationship between longevity and sexual advertisement may be dynamic (that is, either positive or negative), depending on local conditions such as resource availability. Moreover, they caution the use of longevity as a proxy for fitness in sexual selection studies, and suggest avenues for future research on the relationship between sexual attractiveness and ageing.
Evolution | 2005
Robert Brooks; John Hunt; Mark W. Blows; Michael J. Smith; Luc F. Bussière; Michael D. Jennions
Abstract Stabilizing selection is a fundamental concept in evolutionary biology. In the presence of a single intermediate optimum phenotype (fitness peak) on the fitness surface, stabilizing selection should cause the population to evolve toward such a peak. This prediction has seldom been tested, particularly for suites of correlated traits. The lack of tests for an evolutionary match between population means and adaptive peaks may be due, at least in part, to problems associated with empirically detecting multivariate stabilizing selection and with testing whether population means are at the peak of multivariate fitness surfaces. Here we show how canonical analysis of the fitness surface, combined with the estimation of confidence regions for stationary points on quadratic response surfaces, may be used to define multivariate stabilizing selection on a suite of traits and to establish whether natural populations reside on the multivariate peak. We manufactured artificial advertisement calls of the male cricket Teleogryllus commodus and played them back to females in laboratory phonotaxis trials to estimate the linear and nonlinear sexual selection that female phonotactic choice imposes on male call structure. Significant nonlinear selection on the major axes of the fitness surface was convex in nature and displayed an intermediate optimum, indicating multivariate stabilizing selection. The mean phenotypes of four independent samples of males, from the same population as the females used in phonotaxis trials, were within the 95% confidence region for the fitness peak. These experiments indicate that stabilizing sexual selection may play an important role in the evolution of male call properties in natural populations of T. commodus.
Ecology | 2008
Dustin J. Marshall; Russell Bonduriansky; Luc F. Bussière
Offspring size is strikingly variable within species. Although theory can account for variation in offspring size among mothers, an adaptive explanation for variation within individual broods has proved elusive. Theoretical considerations of this problem assume that producing offspring that are too small results in reduced offspring viability, but producing offspring that are too large (for that environment) results only in a lost opportunity for increased fecundity. However, logic and recent evidence suggest that offspring above a certain size will also have lower fitness, such that mothers face fitness penalties on either side of an optimum. Although theory assuming intermediate optima has been developed for other diversification traits, the implications of this idea for selection on intra-brood variance in offspring size have not been explored theoretically. Here we model the fitness of mothers producing offspring of uniform vs. variable size in unpredictably variable environments and compare these two strategies under a variety of conditions. Our model predicts that producing variably sized offspring results in higher mean maternal fitness and less variation in fitness among generations when there is a maximum and minimum viable offspring size, and when many mothers under- or overestimate this optimum. This effect is especially strong when the viable offspring size range is narrow relative to the range of environmental variation. To determine whether this prediction is consistent with empirical evidence, we compared within- and among-mother variation in offspring size for five phyla of marine invertebrates with different developmental modes corresponding to contrasting levels of environmental predictability. Our comparative analysis reveals that, in the developmental mode in which mothers are unlikely to anticipate the relationship between offspring size and performance, size variation within mothers exceeds variation among mothers, but the converse is true when optimal offspring size is likely to be more predictable. Together, our results support the hypothesis that variation in offspring size within broods can reflect an adaptive strategy for dealing with unpredictably variable environments. We suggest that, when there is a minimum and a maximum viable offspring size and the environment is unpredictable, selection will act on both the mean and variance of offspring size.
Evolution | 2006
Luc F. Bussière; John Hunt; Michael D. Jennions; Robert Brooks
Abstract The prevalence and evolutionary consequences of cryptic female choice (CFC) remain highly controversial, not least because the processes underlying its expression are often concealed within the female reproductive tract. However, even when female discrimination is relatively easy to observe, as in numerous insect species with externally attached spermatophores, it is often difficult to demonstrate directional CFC for certain male phenotypes over others. Using a biological assay to separate male crickets into attractive or unattractive categories, we demonstrate that females strongly discriminate against unattractive males by removing their spermatophores before insemination can be completed. This results in significantly more sperm being transferred by attractive males than unattractive males. Males respond to CFC by mate guarding females after copulation, which increases the spermatophore retention of both attractive and unattractive males. Interestingly, unattractive males who suffered earlier interruption of sperm transfer benefited more from mate guarding, and they guarded females more vigilantly than attractive males. Our results suggest that postcopulatory mate guarding has evolved via sexual conflict over insemination times rather than through genetic benefits of biasing paternity toward vigorous males, as has been previously suggested.
Genetica | 2008
Luc F. Bussière; John Hunt; Kai N. Stölting; Michael D. Jennions; Robert Brooks
Mate choice for good-genes remains one of the most controversial evolutionary processes ever proposed. This is partly because strong directional choice should theoretically deplete the genetic variation that explains the evolution of this type of female mating preference (the so-called lek paradox). Moreover, good-genes benefits are generally assumed to be too small to outweigh opposing direct selection on females. Here, we review recent progress in the study of mate choice for genetic quality, focussing particularly on the potential for genotype by environment interactions (GEIs) to rescue additive genetic variation for quality, and thereby resolve the lek paradox. We raise five questions that we think will stimulate empirical progress in this field, and suggest directions for research in each area: (1) How is condition-dependence affected by environmental variation? (2) How important are GEIs for maintaining additive genetic variance in condition? (3) How much do GEIs reduce the signalling value of male condition? (4) How does GEI affect the multivariate version of the lek paradox? (5) Have mating biases for high-condition males evolved because of indirect benefits?
Evolution | 2008
Matthew D. Hall; Luc F. Bussière; John Hunt; Robert Brooks
Abstract Sexual interactions are often rife with conflict. Conflict between members of the same sex over opportunities to mate has long been understood to effect evolution via sexual selection. Although conflict between males and females is now understood to be widespread, such conflict is seldom considered in the same light as a general agent of sexual selection. Any interaction between males or females that generates variation in fitness, whether due to conflict, competition or mate choice, can potentially influence sexual selection acting on a range of male traits. Here we seek to address a lack of direct experimental evidence for how sexual conflict influences sexual selection more broadly. We manipulate a major source of sexual conflict in the black field cricket, Teleogryllus commodus, and quantify the resulting changes in the nature of sexual selection using formal selection analysis to statistically compare multivariate fitness surfaces. In T. commodus, sexual conflict occurs over the attachment time of an external spermatophore. By experimentally manipulating the ability of males and females to influence spermatophore attachment, we found that sexual conflict significantly influences the opportunity, form, and intensity of sexual selection on male courtship call and body size. When males were able to harass females, the opportunity for selection was smaller, the form of selection changed, and sexual selection was weaker. We discuss the broader evolutionary implications of these findings, including the contributions of sexual conflict to fluctuating sexual selection and the maintenance of additive genetic variation.
Proceedings of the Royal Society of London Series B: Biological Sciences | 2004
Robert Brooks; Luc F. Bussière; Michael D. Jennions; John Hunt
Left–handers occur at unexpectedly high frequencies at top levels of many interactive sports. This may occur either because left–handed contestants are innately superior or because they enjoy a negatively frequency–dependent strategic advantage when rare relative to right–handers. We analysed the batting records from the 2003 cricket World Cup and showed that left–handed batsmen were more successful than right–handers, and that the most successful teams had close to 50% left–handed batsmen. We demonstrate that this was because left–handed batsmen have a strategic advantage over bowlers, and that this advantage is greatest over bowlers that are unaccustomed to bowling to left–handers. This provides a clear mechanism for negative frequency–dependent success of left–handed batsmen. Our results may also support a historical role for negative frequency–dependent success in fights and other contests in the maintenance of left–handedness by natural selection.
The American Naturalist | 2008
Clint D. Kelly; Luc F. Bussière; Darryl T. Gwynne
Female‐biased size dimorphism, in which females are larger than males, is prevalent in many animals. Several hypotheses have been developed to explain this pattern of dimorphism. One of these hypotheses, the mobility hypothesis, suggests that female‐biased size dimorphism arises because smaller males are favored in scramble competition for mates. Using radiotelemetry, we assessed the mobility hypothesis in the Cook Strait giant weta (Deinacrida rugosa), a species with strong female‐biased size dimorphism, and tested the prediction that male traits promoting mobility (i.e., longer legs, smaller bodies) are useful in scramble competition for mates and thus promote reproductive success. Our predictions were supported: males with longer legs and smaller bodies exhibited greater mobility (daily linear displacement when not mating), and more mobile males had greater insemination success. No phenotypic traits predicted female mobility or insemination success. In species with female‐biased size dimorphism, sexual selection on males is often considered to be weak compared to species in which males are large or possess weaponry. We found that male giant weta experience sexual selection intensities on par with males of a closely related harem‐defending polygynous species, likely because of strong scramble competition with other males.
Experimental Gerontology | 2011
Danielle K. Mackenzie; Luc F. Bussière; Matthew C. Tinsley
Immune system effectiveness generally declines as animals age, compromising disease resistance. In Drosophila, expression of a variety of immune-related genes elevates during ageing; however how this is linked to increasing pathogen susceptibility in older flies has remained unclear. We investigated whether changes in the Drosophila cellular immune response might contribute to immunosenescence. Experiments studied fly cohorts of different ages and compared the numbers and activity of the circulating haemocytes involved in pathogen defence. In female wildtype Samarkand and Oregon R flies the haemocyte population fell by 31.8% and 10.2% respectively during the first four weeks of adulthood. Interestingly we detected no such decline in male flies. The impact of ageing on the phagocytic activity of haemocytes was investigated by injecting flies with fluorescently labelled microbes or latex beads and assessing the ability of haemocytes to engulf them. For all immune challenges the proportion of actively phagocytosing haemocytes decreased as flies aged. Whilst 24.3%±1.15% of haemocytes in one-week-old flies phagocytosed Escherichia coli bacteria or Beauveria bassiana fungal spores, this decreased to 16.7%±0.99% in four-week-old flies. This clear senescence of the Drosophila cellular immune response may underpin increased disease susceptibility in older flies.
Evolution | 2010
Claudia Fricke; Oliver Y. Martin; Amanda Bretman; Luc F. Bussière; Tracey Chapman
Understanding the selection pressures shaping components of male reproductive success is essential for assessing the role of sexual selection on phenotypic evolution. A males competitive reproductive success is often measured in sequential mating tests by recording P1 (first mating male) and P2 (second mating male) paternity scores. How each of these scores relates to a males overall fitness, for example, lifetime reproductive success is, however, not known. This information is needed to determine whether males benefit from maximizing both P1 and P2 or by trading off P1 against P2 ability. We measured P1, P2, and an index of lifetime reproductive success (LRSi, a males competitive reproductive success measured over 12 days) for individual male Drosophila melanogaster. We found no evidence for phenotypic correlations between P1 and P2. In addition, whereas both P1 and P2 were associated with relative LRSi, only P2 predicted absolute LRSi. The results suggest that P2 was most closely linked to LRSi in the wild‐type population studied, a finding which may be common to species with strong second male sperm precedence. The study illustrates how P1 and P2 can have differing relationships with a males overall reproductive success, and highlights the importance of understanding commonly used measures of sperm competition in the currency of fitness.