Luc Furic
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Furic.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Luc Furic; Liwei Rong; Ola Larsson; Ismaël Hervé Koumakpayi; Kaori Yoshida; Andrea Brueschke; Emmanuel Petroulakis; Nathaniel Robichaud; Michael Pollak; Louis Gaboury; Pier Paolo Pandolfi; Fred Saad; Nahum Sonenberg
Translational regulation plays a critical role in the control of cell growth and proliferation. A key player in translational control is eIF4E, the mRNA 5′ cap-binding protein. Aberrant expression of eIF4E promotes tumorigenesis and has been implicated in cancer development and progression. The activity of eIF4E is dysregulated in cancer. Regulation of eIF4E is partly achieved through phosphorylation. However, the physiological significance of eIF4E phosphorylation in mammals is not clear. Here, we show that knock-in mice expressing a nonphosphorylatable form of eIF4E are resistant to tumorigenesis in a prostate cancer model. By using a genome-wide analysis of translated mRNAs, we show that the phosphorylation of eIF4E is required for translational up-regulation of several proteins implicated in tumorigenesis. Accordingly, increased phospho-eIF4E levels correlate with disease progression in patients with prostate cancer. Our findings establish eIF4E phosphorylation as a critical event in tumorigenesis. These findings raise the possibility that chemical compounds that prevent the phosphorylation of eIF4E could act as anticancer drugs.
The EMBO Journal | 2007
Yoon Ki Kim; Luc Furic; Marc Parisien; François Major; Lynne E. Maquat
It is currently unknown how extensively the double‐stranded RNA‐binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3′‐untranslated region (3′‐UTR) of ADP ribosylation factor (ARF)1 mRNA has been shown to target ARF1 mRNA for Stau1‐mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense‐mediated mRNA decay factor Upf1 to the ARF1 3′‐UTR by Stau1. Here, we demonstrate that Stau1 binds to a complex structure within the ARF1 3′‐UTR. We also use microarrays to show that 1.1 and 1.0% of the 11 569 HeLa‐cell transcripts that were analyzed are upregulated and downregulated, respectively, at least two‐fold upon Stau1 depletion in three independently performed experiments. We localize the Stau1 binding site to the 3′‐UTR of four mRNAs that we define as natural SMD targets. Additionally, we provide evidence that the efficiency of SMD increases during the differentiation of C2C12 myoblasts to myotubes. We propose that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.
Cancer Research | 2011
Bruce W. Konicek; Jennifer R. Stephens; Ann M. McNulty; Nathaniel Robichaud; Robert B. Peery; Chad A. Dumstorf; Michele Dowless; Philip W. Iversen; Stephen Parsons; Karen Ellis; Denis J. McCann; Jerry Pelletier; Luc Furic; Jonathan M. Yingling; Louis Stancato; Nahum Sonenberg; Jeremy R. Graff
Activation of the translation initiation factor 4E (eIF4E) promotes malignant transformation and metastasis. Signaling through the AKT-mTOR pathway activates eIF4E by phosphorylating the inhibitory 4E binding proteins (4E-BP). This liberates eIF4E and allows binding to eIF4G. eIF4E can then be phosphorylated at serine 209 by the MAPK-interacting kinases (Mnk), which also interact with eIF4G. Although dispensable for normal development, Mnk function and eIF4E phosphorylation promote cellular proliferation and survival and are critical for malignant transformation. Accordingly, Mnk inhibition may serve as an attractive cancer therapy. We now report the identification of a potent, selective and orally bioavailable Mnk inhibitor that effectively blocks 4E phosphorylation both in vitro and in vivo. In cultured cancer cell lines, Mnk inhibitor treatment induces apoptosis and suppresses proliferation and soft agar colonization. Importantly, a single, orally administered dose of this Mnk inhibitor substantially suppresses eIF4E phosphorylation for at least 4 hours in human xenograft tumor tissue and mouse liver tissue. Moreover, oral dosing with the Mnk inhibitor significantly suppresses outgrowth of experimental B16 melanoma pulmonary metastases as well as growth of subcutaneous HCT116 colon carcinoma xenograft tumors, without affecting body weight. These findings offer the first description of a novel, orally bioavailable MNK inhibitor and the first preclinical proof-of-concept that MNK inhibition may provide a tractable cancer therapeutic approach.
Oncogene | 2015
Nathaniel Robichaud; S V del Rincón; Bonnie Huor; Tommy Alain; Luca A. Petruccelli; J Hearnden; Christophe Goncalves; S Grotegut; Charles H. Spruck; Luc Furic; Ola Larsson; William J. Muller; Wilson H. Miller; Nahum Sonenberg
The progression of cancers from primary tumors to invasive and metastatic stages accounts for the overwhelming majority of cancer deaths. Understanding the molecular events which promote metastasis is thus critical in the clinic. Translational control is emerging as an important factor in tumorigenesis. The messenger RNA (mRNA) cap-binding protein eIF4E is an oncoprotein that has an important role in cancer initiation and progression. eIF4E must be phosphorylated to promote tumor development. However, the role of eIF4E phosphorylation in metastasis is not known. Here, we show that mice in which eukaryotic translation initiation factor 4E (eIF4E) cannot be phosphorylated are resistant to lung metastases in a mammary tumor model, and that cells isolated from these mice exhibit impaired invasion. We also demonstrate that transforming growth factor-beta (TGFβ) induces eIF4E phosphorylation to promote the translation of Snail and Mmp-3 mRNAs, and the induction of epithelial-to-mesenchymal transition (EMT). Furthermore, we describe a new model wherein EMT induced by TGFβ requires translational activation via the non-canonical TGFβ signaling branch acting through eIF4E phosphorylation.
Nature Immunology | 2012
Barbara Herdy; Maritza Jaramillo; Yuri V. Svitkin; Amy B. Rosenfeld; Mariko Kobayashi; Derek Walsh; Tommy Alain; Polen Sean; Nathaniel Robichaud; Ivan Topisirovic; Luc Furic; Ryan J.O. Dowling; Annie Sylvestre; Liwei Rong; Rodney Colina; Mauro Costa-Mattioli; Jörg H. Fritz; Martin Olivier; Earl G. Brown; Ian Mohr; Nahum Sonenberg
Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-β (IFN-β). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.
Biochemical Journal | 2006
Catherine Martel; Paolo Macchi; Luc Furic; Michael A. Kiebler
Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport.
Journal of Neurochemistry | 2003
Guy Bélanger; Mark A. Stocksley; Marie Vandromme; Laurent Schaeffer; Luc Furic; Bernard J. Jasmin
Staufen is an RNA‐binding protein, first identified for its role in oogenesis and CNS development in Drosophila. Two mammalian homologs of Staufen have been identified and shown to bind double‐stranded RNA and tubulin, and to function in the somatodendritic transport of mRNA in neurons. Here, we examined whether Staufen proteins are expressed in skeletal muscle in relation to the neuromuscular junction. Immunofluorescence experiments revealed that Staufen1 (Stau1) and Staufen2 (Stau2) accumulate preferentially within the postsynaptic sarcoplasm of muscle fibers as well as at newly formed ectopic synapses. Western blot analyses showed that the levels of Stau1 and Stau2 are greater in slow muscles than in fast‐twitch muscles. Muscle denervation induced a significant increase in the expression of Stau1 and Stau2 in the extrasynaptic compartment of both fast and slow muscles. Consistent with these observations, we also demonstrated that expression of Stau1 and Stau2 is increased during myogenic differentiation and that treatment of myotubes with agrin and neuregulin induces a further increase in the expression of both Staufen proteins. We propose that Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction.
Nature Communications | 2016
Valentina Gandin; Laia Masvidal; Marie Cargnello; Laszlo Gyenis; Shannon McLaughlan; Yutian Cai; Clara Tenkerian; Masahiro Morita; Preetika Balanathan; Olivier Jean-Jean; Vuk Stambolic; Matthias Trost; Luc Furic; Louise Larose; Antonis E. Koromilas; Katsura Asano; David W. Litchfield; Ola Larsson; Ivan Topisirovic
Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation.
The Prostate | 2013
Sarah Wilkinson; Luc Furic; Grant Buchanan; Ola Larsson; John Pedersen; Mark Frydenberg; Gail P. Risbridger; Renea A. Taylor
Contribution of stromal Hedgehog (Hh) signaling is evident in the prostate gland in mice, but needs translation to human tissues if Hh therapeutics are to be used effectively. Our goal was to determine if primary human prostate fibroblasts contain cilia, and respond to prostate Hh signaling.
Molecular Cancer Therapeutics | 2010
Chad A. Dumstorf; Bruce W. Konicek; Ann M. McNulty; Stephen Parsons; Luc Furic; Nahum Sonenberg; Jeremy R. Graff
Enzastaurin (LY317615.HCl) is currently in a phase III registration trial for diffuse large B-Cell lymphoma and numerous phase II clinical trials. Enzastaurin suppresses angiogenesis and induces apoptosis in multiple human tumor cell lines by inhibiting protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K)/AKT pathway signaling. PI3K/AKT pathway signaling liberates eukaryotic translation initiation factor 4E (eIF4E) through the hierarchical phosphorylation of eIF4E binding proteins (4E-BP). When hypophosphorylated, 4E-BPs associate with eIF4E, preventing eIF4E from binding eIF4G, blocking the formation of the eIF4F translation initiation complex. Herein, we show that enzastaurin treatment impacts signaling throughout the AKT/mTOR pathway leading to hypophosphorylation of 4E-BP1 in cancer cells of diverse lineages (glioblastoma, colon carcinoma, and B-cell lymphoma). Accordingly, enzastaurin treatment increases the amount of eIF4E bound to 4E-BP1 and decreases association of eIF4E with eIF4G, thereby reducing eIF4F translation initiation complex levels. We therefore chose to evaluate whether this effect on 4E-BP1 was involved in enzastaurin-induced apoptosis. Remarkably, enzastaurin-induced apoptosis was blocked in cancer cells depleted of 4E-BP1 by siRNAs, or in 4EBP1/2 knockout murine embryonic fibroblasts cells. Furthermore, eIF4E expression was increased and 4E-BP1 expression was decreased in cancer cells selected for reduced sensitivity to enzastaurin-induced apoptosis. These data highlight the importance of modulating 4E-BP1 function, and eIF4F complex levels, in the direct antitumor effect of enzastaurin and suggest that 4E-BP1 function may serve as a promising determinant of enzastaurin activity. Mol Cancer Ther; 9(12); 3158–63. ©2010 AACR.