Luc Illusie
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Illusie.
Archive | 2006
Barbara Fantechi; Lothar Göttsche; Luc Illusie; Steven L. Kleiman; Nitin Nitsure; Angelo Vistoli
Grothendieck topologies, fibered categories and descent theory: Introduction Preliminary notions Contravariant functors Fibered categories Stacks Construction of Hilbert and Quot schemes: Construction of Hilbert and Quot schemes Local properties and Hilbert schemes of points: Introduction Elementary deformation theory Hilbert schemes of points Grothendiecks existence theorem in formal geometry with a letter of Jean-Pierre Serre: Grothendiecks existence theorem in formal geometry The Picard scheme: The Picard scheme Bibliography Index.
Publications Mathématiques de l'IHÉS | 1983
Luc Illusie; Michel Raynaud
© Publications mathématiques de l’I.H.É.S., 1983, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
International Mathematics Research Notices | 2013
Luc Illusie; Weizhe Zheng
In this article, we study several problems related to virtual traces for finite group actions on schemes of finite type over an algebraically closed field. We also discuss applications to fixed point sets. Our results generalize previous results obtained by Deligne, Laumon, Serre and others.
Archive | 2007
Luc Illusie
Soient k un corps de caracteristique p > 0, r un entier ≥ 0, et a = (a1,...,am) une suite d’entiers ≥ 1. Notons 5 le k-schema parametrant les intersections completes lisses de dimension r et multidegre a dans ℙkr+m et X → S la famille universelle. Nous prouvons le resultat suivant: Theoreme 0.1. Il existe un ouvert non vide U de S tel que, pour tout s dans U, Xssoit ordinaire.
Archive | 2015
Luc Illusie
Grothendieck visited Pisa twice, in 1966, and in 1969. It is on these occasions that he conceived his theory of crystalline cohomology and wrote foundations for the theory of deformations of p-divisible groups, which he called Barsotti-Tate groups. He did this in two letters, one to Tate, dated May 1966, and one to me, dated Dec. 2–4, 1969. Moreover, discussions with Barsotti that he had during his first visit led him to results and conjectures on specialization of Newton polygons, which he wrote in a letter to Barsotti, dated May 11, 1970.
Archive | 1971
Luc Illusie
Inventiones Mathematicae | 1987
Pierre Deligne; Luc Illusie
Lecture Notes in Mathematics | 1981
Pierre Deligne; Luc Illusie
Journal of Mathematical Sciences-the University of Tokyo | 2005
Luc Illusie; Kazuya Kato; Chikara Nakayama
Archive | 1996
José Bertin; Jean-Pierre Demailly; Luc Illusie; Chris Peters