Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luc Jaeger is active.

Publication


Featured researches published by Luc Jaeger.


Chemistry & Biology | 1996

New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.

Valerie Lehnert; Luc Jaeger; François Michele; Eric Westhof

BACKGROUND Group I introns self-splice via two consecutive trans-esterification reactions in the presence of guanosine cofactor and magnesium ions. Comparative sequence analysis has established that a catalytic core of about 120 nucleotides is conserved in all known group I introns. This core is generally not sufficient for activity, however, and most self-splicing group I introns require non-conserved peripheral elements to stabilize the complete three-dimensional (3D) structure. The physico-chemical properties of group I introns make them excellent systems for unraveling the structural basis of the RNA-RNA interactions responsible for promoting the self-assembly of complex RNAs. RESULTS We present phylogenetic and experimental evidence for the existence of three additional tertiary base pairings between hairpin loops within peripheral components of subgroup IC1 and ID introns. Each of these new long range interactions, called P13, P14 and P16, involves a terminal loop located in domain 2. Although domains 2 of IC and ID introns share very strong sequence similarity, their terminal loops interact with domains 5 and 9 (subgroup IC1) and domain 6 (subgroup ID). Based on these tertiary contacts, comparative sequence analysis, and published experimental results such as Fe(II)-EDTA protection patterns, we propose 3D models for two entire group I introns, the subgroup IC1 intron in the large ribosomal precursor RNA of Tetrahymena thermophila and the SdCob.1 subgroup ID intron found in the cytochrome b gene of Saccharomyces douglasii. CONCLUSIONS Three-dimensional models of group I introns belonging to four different subgroups are now available. They all emphasize the modular and hierarchical organization of the architecture of group I introns and the widespread use of base-pairings between terminal hairpin loops for stabilizing the folded and active structures of large and complex RNA molecules.


Nature Nanotechnology | 2010

In vitro assembly of cubic RNA-based scaffolds designed in silico

Kirill A. Afonin; Eckart Bindewald; Alan J. Yaghoubian; Neil R. Voss; Erica L. Jacovetty; Bruce A. Shapiro; Luc Jaeger

The organization of biological materials into versatile three-dimensional assemblies could be used to build multifunctional therapeutic scaffolds for use in nanomedicine. Here we report a strategy to design three-dimensional nanoscale scaffolds that can be self-assembled from RNA with precise control over their shape, size and composition. These cubic nanoscaffolds are only ~13 nm in diameter and are composed of short oligonucleotides making them amenable to chemical synthesis, point modifications and further functionalization. Nanocube assembly is verified by gel assays, dynamic light scattering and cryogenic electron microscopy. Formation of functional RNA nanocubes is also demonstrated by incorporation of a light-up fluorescent RNA aptamer that is optimally active only upon full RNA assembly. Moreover, we show the RNA nano-scaffolds can self-assemble in isothermal conditions (37°C) during in vitro transcription, which opens a route towards the construction of sensors, programmable packaging and cargo delivery systems for biomedical applications.


Nano Letters | 2011

Self-Assembling RNA Nanorings Based on RNAI/II Inverse Kissing Complexes

Wade W. Grabow; Paul Zakrevsky; Kirill A. Afonin; Arkadiusz Chworos; Bruce A. Shapiro; Luc Jaeger

RNA is an attractive biopolymer for nanodesign of self-assembling particles for nanobiotechnology and synthetic biology. Here, we experimentally characterize by biochemical and biophysical methods the formation of thermostable and ribonuclease resistant RNA nanorings previously proposed by computational design. High yields of fully programmable nanorings were produced based on several RNAI/IIi kissing complex variants selected for their ability to promote polygon self-assembly. This self-assembly strategy relying on the particular geometry of bended kissing complexes has potential for developing short interfering RNA delivery agents.


Nature Chemistry | 2010

A polyhedron made of tRNAs.

Isil Severcan; Cody Geary; Arkadiusz Chworos; Neil R. Voss; Erica L. Jacovetty; Luc Jaeger

Supra-molecular assembly is a powerful strategy used by nature for building nano-scale architectures with predefined sizes and shapes. Numerous challenges remain however to be solved in order to demonstrate precise control over the synthesis, folding and assembly of rationally designed three-dimensional (3D) nano-objects made of RNA. Using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular 3D particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs to build thermostable 3D nano-architectures that do not rely on helix bundles or tensegrity. RNA 3D particles can potentially be used as carriers or scaffolds in nano-medicine and synthetic biology.


Folding and Design | 1996

RNA tectonics: towards RNA design

Eric Westhof; Benoît Masquida; Luc Jaeger

Our understanding of the structural, folding and catalytic properties of RNA molecules has increased enormously in recent years. The discovery of catalytic RNA molecules by Sidney Altman and Tom Cech, the development of in vitro selection procedures, and the recent crystallizations of hammerhead ribozymes and of a large domain of an autocatalytic group 1 intron are some of the milestones that have contributed to the explosion of the RNA field. The availability of a three-dimensional model for the catalytic core of group 1 introns contributed also a heuristic drive toward the development of new techniques and approaches for unravelling RNA architecture, folding and stability. Here, we emphasize the mosaic structure of RNA and review some of the recent literature pertinent to this working framework. In the long run, RNA tectonics aims at constructing combinatorial libraries, using RNA mosaic units for creating molecules with dedicated shapes and properties.


Nature Protocols | 2011

Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine

Kirill A. Afonin; Wade W. Grabow; Faye M Walker; Eckart Bindewald; Marina A. Dobrovolskaia; Bruce A. Shapiro; Luc Jaeger

Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable. These NPs are engineered based on two complementary nanoscaffold designs (nanoring and nanocube), which serve as carriers of multiple siRNAs. The NPs are functionalized by the extension of up to six scaffold strands with siRNA duplexes. The assembly protocols yield functionalized RNA NPs, and we show that they interact in vitro with human recombinant Dicer to produce siRNAs. Our design strategies allow for fast, economical and easily controlled production of endotoxin-free therapeutic RNA NPs that are suitable for preclinical development.


Nano Letters | 2009

Square-Shaped RNA Particles From Different RNA Folds

Isil Severcan; Cody Geary; Erik Verzemnieks; Arkadiusz Chworos; Luc Jaeger

The structural information encoding specific conformations of natural RNAs can be implemented within artificial RNA sequences to control both three-dimensional (3D) shape and self-assembling interfaces for nanotechnology and synthetic biology applications. We have identified three natural RNA motifs known to direct helical topology into approximately 90 degrees bends: a five-way tRNA junction, a three-way junction, and a two-helix bend. These three motifs, embedded within rationally designed RNAs (tectoRNA), were chosen for generating square-shaped tetrameric RNA nanoparticles. The ability of each motif to direct the formation of supramolecular assemblies was compared by both native gel assays and atomic force microscopy. While there are multiple structural solutions for building square-shaped RNA particles, differences in the thermodynamics and molecular dynamics of the 90 degrees motif can lead to different biophysical behaviors for the resulting supramolecular complexes. We demonstrate via structural assembly programming how the different 90 degrees motifs can preferentially direct the formation of either 2D or 3D assemblies.


Accounts of Chemical Research | 2014

RNA Self-Assembly and RNA Nanotechnology

Wade W. Grabow; Luc Jaeger

CONSPECTUS: Nanotechnologys central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.


Nucleic Acids Research | 2006

Controlling RNA self-assembly to form filaments

Lorena Nasalean; Stéphanie Baudrey; Neocles B. Leontis; Luc Jaeger

Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. ‘RNA tectonics’ is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incorporating modular 4-way junction (4WJ) motifs, hairpin loops and their cognate loop–receptors to create extended, programmable interaction interfaces. Specific and directional RNA–RNA interactions at these interfaces enable conformational, topological and orientational control of tectoRNA self-assembly. The interacting motifs are precisely positioned within the helical arms of the 4WJ to program assembly from only one helical stacking conformation of the 4WJ. TectoRNAs programmed to assemble with orientational compensation produce micrometer-scale RNA filaments through supra-molecular equilibrium polymerization. As visualized by transmission electron microscopy, these RNA filaments resemble actin filaments from the protein world. This work emphasizes the potential of RNA as a scaffold for designing and engineering new controllable biomaterials mimicking modern cytoskeletal proteins.


Nucleic Acids Research | 2008

Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors

Cody Geary; Stéphanie Baudrey; Luc Jaeger

Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG … AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied ‘11nt’ GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC … GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA–RNA interactions are proposed.

Collaboration


Dive into the Luc Jaeger's collaboration.

Top Co-Authors

Avatar

Arkadiusz Chworos

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wade W. Grabow

University of California

View shared research outputs
Top Co-Authors

Avatar

Kirill A. Afonin

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Shapiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cody Geary

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric Westhof

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Eckart Bindewald

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Surekha Gajria

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge