Luc Patiny
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Patiny.
Journal of Computer-aided Molecular Design | 2011
Iurii Sushko; Sergii Novotarskyi; Robert Körner; Anil Kumar Pandey; Matthias Rupp; Wolfram Teetz; Stefan Brandmaier; Ahmed Abdelaziz; Volodymyr V. Prokopenko; Vsevolod Yu. Tanchuk; Roberto Todeschini; Alexandre Varnek; Gilles Marcou; Peter Ertl; Vladimir Potemkin; Maria A. Grishina; Johann Gasteiger; Christof H. Schwab; I. I. Baskin; V. A. Palyulin; E. V. Radchenko; William J. Welsh; Vladyslav Kholodovych; Dmitriy Chekmarev; Artem Cherkasov; João Aires-de-Sousa; Qingyou Zhang; Andreas Bender; Florian Nigsch; Luc Patiny
The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.
Journal of Chemical Information and Modeling | 2013
Luc Patiny; Alain Borel
Web services, as an aspect of cloud computing, are becoming an important part of the general IT infrastructure, and scientific computing is no exception to this trend. We propose a simple approach to develop chemical Web services, through which servers could expose the essential data manipulation functionality that students and researchers need for chemical calculations. These services return their results as JSON (JavaScript Object Notation) objects, which facilitates their use for Web applications. The ChemCalc project http://www.chemcalc.org demonstrates this approach: we present three Web services related with mass spectrometry, namely isotopic distribution simulation, peptide fragmentation simulation, and molecular formula determination. We also developed a complete Web application based on these three Web services, taking advantage of modern HTML5 and JavaScript libraries (ChemDoodle and jQuery).
Beilstein Journal of Organic Chemistry | 2006
Koen Van Aken; Lucjan Strekowski; Luc Patiny
A novel post-synthesis analysis tool is presented which evaluates quality of the organic preparation based on yield, cost, safety, conditions and ease of workup/purification. The proposed approach is based on assigning a range of penalty points to these parameters. This semi-quantitative analysis can easily be modified by other synthetic chemists who may feel that some parameters should be assigned different relative penalty points. It is a powerful tool to compare several preparations of the same product based on safety, economical and ecological features.
Nature Chemical Biology | 2014
Rudolf Griss; Alberto Schena; Luc Reymond; Luc Patiny; Dominique Werner; Christine E. Tinberg; David Baker; Kai Johnsson
For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patients blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.
Onkologie | 2002
E.H. Cerny; R. Lévy; J. Mauel; M. Mpandi; Manfred Mutter; C. Henzelin-Nkubana; Luc Patiny; Gabriele Tuchscherer; T. Cerny
Background: Nicotine is the main culprit for dependence on tobacco-containing products, which in turn are a major etiologic factor for cardiovascular diseases and cancer. This publication describes a vaccine, which elicits antibodies against nicotine. The antibodies in the blood stream intercept the nicotine molecule on its way to its receptors and greatly diminish the nicotine influx to the brain shortly after smoking. Methods: The nicotine molecule is chemically linked to cholera toxin B as a carrier protein in order to induce antibodies. The potential to elicit antibodies after subcutaneous as well as intranasal immunization is evaluated. In order to simulate realistic conditions, nicotine pumps delivering the nicotine equivalent of 5 packages of cigarettes for 4 weeks are implanted into the mice 1 week prior to vaccination. The protective effect of the vaccine is measured 5 weeks after vaccination by comparing the influx of radiolabeled nicotine in the brains of vaccinated and non-vaccinated animals 5 min after challenge with the nicotine equivalent of 2 cigarettes. Results: The polyclonal antibodies induced by the vaccine show a mean avidity of 1.8 × 107 l/Mol. Subcutaneous immunization elicits high antibody levels of the IgG class, and significant IgA antibody levels in the saliva of vaccinated mice can be found after intranasal vaccination. The protective effect also in the animals with implanted nicotine pumps is significant: less than 10% of radiolabeled nicotine found in the brains of non-vaccinated animals can be found in the brains of vaccinated animals. Conclusions: These data provide credible evidence that a vaccine can break the vicious circle between smoking and instant gratification by intercepting the nicotine molecule. Astonishingly, there is no sign of exhaustion of specific antibodies even under extreme conditions, which makes it highly unlikely that a smoker can overcome the protective effect of the vaccine by smoking more. Finally, the high titers of specific antibodies after 1 year let us hope that booster vaccinations are probably only necessary in intervals of years.
Journal of Magnetic Resonance | 2011
Andrés M. Castillo; Luc Patiny; Julien Wist
The computational cost for the simulation of NMR spectra grows exponentially with the number of nuclei. Today, the memory available to store the Hamiltonian limits the size of the system that can be studied. Modern computers enable to tackle systems containing up to 13 spins [1], which obviously does not allow to study most molecules of interest in research. This issue can be addressed by identifying groups of spins or fragments that are not or only weakly interacting together, i.e., that only share weakly coupled spin pairs. Such a fragmentation is only permitted in the weak coupling regime, i.e., when the coupling interaction is weak compared to the difference in chemical shift of the coupled spins. Here, we propose a procedure that removes weak coupling interactions in order to split the spin system efficiently and to correct a posteriori for the effect of the neglected couplings. This approach yields accurate spectra when the adequate interactions are removed, i.e., between spins only involved in weak coupling interactions, but fails otherwise. As a result, the computational time for the simulation of 1D spectra grows linearly with the size of the spin system.
Angewandte Chemie | 2000
Angela Wittelsberger; Michael Keller; Leo Scarpellino; Luc Patiny; Hans Acha-Orbea; Manfred Mutter
Reference LCBP-ARTICLE-2000-008doi:10.1002/(SICI)1521-3773(20000317)39:6 3.0.CO;2-D Record created on 2006-02-09, modified on 2016-08-08
Tetrahedron Letters | 2000
Francis Hubler; Thomas Ruckle; Luc Patiny; Tshilolo Muamba; Jean-François Guichou; Manfred Mutter; Roland M. Wenger
An efficient synthesis in 10 steps and overall yields up to 27% of NEtXaa(4)-cyclosporin A derivatives (Xaa = Leu, Val, Ile, Thr) starting from cyclosporin A is described. Biological activities of the new analogues show promising results for the design of cyclosporin derivatives exhibiting non-immunosuppressive and anti-HIV activity
Bioorganic & Medicinal Chemistry | 2010
Simone Bonazzi; Damien Barbaras; Luc Patiny; Rosario Scopelliti; Patricia Schneider; Stewart T. Cole; Marcel Kaiser; Reto Brun; Karl Gademann
The synthesis of nine nostocarboline derivatives with substitutions of the 2-methyl group by alkyl, aryl and functionalized residues, 10 symmetrical bis cationic dimers linking 6-Cl-norharmane through the 2-position and fifteen derivatives of the marine alkaloids eudistomin N and O is reported. These compounds were evaluated in vitro against four parasites (Trypanosoma brucei rhodesiense STIB 900, Trypanosoma cruzi Tulahuen C2C4, Leishmania donovani MHOM-ET-67/L82 axenic amastigotes, and Plasmodium falciparum K1 strain), against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc(2)155 and Corynebacterium glutamicum ATCC13032, and cytotoxicity was determined against L6 rat myoblast cells. Nostocarboline and derivatives displayed potent and selective in vitro inhibition of P. falciparum with weak cytotoxicity. The dimers displayed submicromolar inhibition of L. donovani and T. brucei, and nanomolar activity against P. falciparum, albeit with pronounced cytotoxicity. One dimer showed a MIC(99) value against M. tuberculosis of 2.5 microg/ml. The alkylated eudistomin N and O derivatives displayed activities down to 18 nM against P. falciparum for N-Me Eudistomin N. Four dimers, nostocarboline and three eudostomin derivatives were evaluated in an in vivo Plasmodium berghei mouse model. No significant activity was observed for the dimers, but a 50% reduction in parasitaemia was observed at 4 x 50 mg/kg ip for nostocarboline.
Journal of Chemical Information and Modeling | 2014
Igor V. Tetko; Yurii Sushko; Sergii Novotarskyi; Luc Patiny; Ivan Kondratov; Alexander E. Petrenko; Larisa Charochkina; Abdullah M. Asiri
This article contributes a highly accurate model for predicting the melting points (MPs) of medicinal chemistry compounds. The model was developed using the largest published data set, comprising more than 47k compounds. The distributions of MPs in drug-like and drug lead sets showed that >90% of molecules melt within [50,250]°C. The final model calculated an RMSE of less than 33 °C for molecules from this temperature interval, which is the most important for medicinal chemistry users. This performance was achieved using a consensus model that performed calculations to a significantly higher accuracy than the individual models. We found that compounds with reactive and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative result and the public availability of data from this article will encourage future studies to develop better approaches to define the applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/article/55638.