Luc Pellerin
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Pellerin.
Nature | 2012
Youngjin Lee; Brett M. Morrison; Yun Li; Sylvain Lengacher; Mohamed H. Farah; Paul N. Hoffman; Yiting Liu; Akivaga Tsingalia; Lin Jin; Ping Wu Zhang; Luc Pellerin; Pierre J. Magistretti; Jeffrey D. Rothstein
Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.
Glia | 2007
Luc Pellerin; Anne-Karine Bouzier-Sore; Agnès Aubert; Sébastien Serres; Michel Merle; Robert Costalat; Pierre J. Magistretti
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte‐neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate‐induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte‐neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron‐glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte‐neuron coupled energetics.
Developmental Neuroscience | 1998
Luc Pellerin; Giovanni Pellegri; Philippe G. Bittar; Yves Charnay; Constantin Bouras; Jean-Luc Martin; Nephi Stella; Pierre J. Magistretti
Mounting evidence from in vitro experiments indicates that lactate is an efficient energy substrate for neurons and that it may significantly contribute to maintain synaptic transmission, particularly during periods of intense activity. Since lactate does not cross the blood-brain barrier easily, blood-borne lactate cannot be a significant source. In vitro studies by several laboratories indicate that astrocytes release large amounts of lactate. In 1994, we proposed a mechanism whereby lactate could be produced by astrocytes in an activity-dependent, glutamate-mediated manner. Over the last 2 years we have obtained further evidence supporting the notion that a transfer of lactate from astrocytes to neurons might indeed take place. In this article, we first review data showing the presence of mRNA encoding for two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Second, by using monoclonal antibodies selectively directed against the two distinct lactate dehydrogenase isoforms, LDH1 and LDH5, a specific cellular distribution between neurons and astrocytes is revealed which suggests that a population of astrocytes is a lactate ‘source’ while neurons may be a lactate ‘sink’. Third, we provide biochemical evidence that lactate is interchangeable with glucose to support oxidative metabolism in cortical neurons. This set of data is consistent with the existence of an activity-dependent astrocyte-neuron lactate shuttle for the supply of energy substrates to neurons.
Journal of Cerebral Blood Flow and Metabolism | 2012
Luc Pellerin; Pierre J. Magistretti
Since its introduction 16 years ago, the astrocyte–neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
Journal of Cerebral Blood Flow and Metabolism | 1996
Philippe G. Bittar; Yves Charnay; Luc Pellerin; Constantin Bouras; Pierre J. Magistretti
In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.
Journal of Biological Chemistry | 1997
Stefan Bröer; Basim Rahman; Gioranni Pellegri; Luc Pellerin; Jean-Luc Martin; Stephan Verleysdonk; Bernd Hamprecht; Pierre J. Magistretti
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with aK m value for lactate of 7.7 mm and aV max value of 250 nmol/(min × mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds known to inhibit monocarboxylate transport in other cell types, such as α-cyano-4-hydroxycinnamate andp-chloromercurbenzenesulfonate. Using reverse transcriptase-polymerase chain reaction and Northern blotting, the presence of mRNA coding for the monocarboxylate transporter 1 (MCT1) was demonstrated in primary cultures of astroglial cells. In contrast, neuron-rich primary cultures were found to contain the mRNA coding for the monocarboxylate transporter 2 (MCT2). MCT1 was cloned and expressed in Xenopus laevis oocytes. Comparison of lactate transport in MCT1 expressing oocytes with lactate transport in glial cells revealed that MCT1 can account for all characteristics of lactate transport in glial cells. These data provide further molecular support for the existence of a lactate shuttle between astrocytes and neurons.
Journal of Cerebral Blood Flow and Metabolism | 2003
Anne-Karine Bouzier-Sore; Pierre Voisin; Paul Canioni; Pierre J. Magistretti; Luc Pellerin
The authors investigated concomitant lactate and glucose metabolism in primary neuronal cultures using 13C- and 1H-NMR spectroscopy. Neurons were incubated in a medium containing either [1-13C]glucose and different unlabeled lactate concentrations, or unlabeled glucose and different [3-13C]lactate concentrations. Overall, 13C-NMR spectra of cellular extracts showed that more 13C was incorporated into glutamate when lactate was the enriched substrate. Glutamate 13C-enrichment was also found to be much higher in lactate-labeled than in glucose-labeled conditions. When glucose and lactate concentrations were identical (5.5 mmol/L), relative contributions of glucose and lactate to neuronal oxidative metabolism amounted to 21% and 79%, respectively. Results clearly indicate that when neurons are in the presence of both glucose and lactate, they preferentially use lactate as their main oxidative substrate.
Neuron | 2003
Brigitte Voutsinos-Porche; Gilles Bonvento; Kohichi Tanaka; Pascal Steiner; Egbert Welker; Jean-Yves Chatton; Pierre J. Magistretti; Luc Pellerin
Neuron-glia interactions are essential for synaptic function, and glial glutamate (re)uptake plays a key role at glutamatergic synapses. In knockout mice, for either glial glutamate transporters, GLAST or GLT-1, a classical metabolic response to synaptic activation (i.e., enhancement of glucose utilization) is decreased at an early functional stage in the somatosensory barrel cortex following activation of whiskers. Investigation in vitro demonstrates that glial glutamate transport represents a critical step for triggering enhanced glucose utilization, but also lactate release from astrocytes through a mechanism involving changes in intracellular Na(+) concentration. These data suggest that a metabolic crosstalk takes place between neurons and astrocytes in the developing cortex, which would be regulated by synaptic activity and mediated by glial glutamate transporters.
The Neuroscientist | 2004
Luc Pellerin; Pierre J. Magistretti
Classical neuroenergetics states that glucose is the exclusive energy substrate of brain cells and its full oxidation provides all the necessary energy to support brain function. Recent data have revealed a more intricate picture in which astrocytes play a key role in supplying lactate as an additional energy substrate in register with glutamatergic activity.
Neuroscience | 2000
K Pierre; Luc Pellerin; R Debernardi; B.M Riederer; Pierre J. Magistretti
Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.