Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luc Van Nassauw is active.

Publication


Featured researches published by Luc Van Nassauw.


Circulation | 2008

High-Dose Folic Acid Pretreatment Blunts Cardiac Dysfunction During Ischemia Coupled to Maintenance of High-Energy Phosphates and Reduces Postreperfusion Injury

An L. Moens; Hunter C. Champion; Marc J. Claeys; Barbara Tavazzi; Pawel M. Kaminski; Michael S. Wolin; Dirk J. Borgonjon; Luc Van Nassauw; Azeb Haile; Muz Zviman; Djahida Bedja; Floris L. Wuyts; Rebecca S. Elsaesser; Paul Cos; Kathy L. Gabrielson; Giuseppe Lazzarino; Nazareno Paolocci; Jean Pierre Timmermans; Christiaan J. Vrints; David A. Kass

Background— The B vitamin folic acid (FA) is important to mitochondrial protein and nucleic acid synthesis, is an antioxidant, and enhances nitric oxide synthase activity. Here, we tested whether FA reduces myocardial ischemic dysfunction and postreperfusion injury. Methods and Results— Wistar rats were pretreated with either FA (10 mg/d) or placebo for 1 week and then underwent in vivo transient left coronary artery occlusion for 30 minutes with or without 90 minutes of reperfusion (total n=131; subgroups used for various analyses). FA (4.5×10−6 mol/L IC) pretreatment and global ischemia/reperfusion (30 minutes/30 minutes) also were performed in vitro (n=28). After 30 minutes of ischemia, global function declined more in controls than in FA-pretreated rats (&Dgr;dP/dtmax, −878±586 versus −1956±351 mm Hg/s placebo; P=0.03), and regional thickening was better preserved (37.3±5.3% versus 5.1±0.6% placebo; P=0.004). Anterior wall perfusion fell similarly (−78.4±9.3% versus −71.2±13.8% placebo at 30 minutes), yet myocardial high-energy phosphates ATP and ADP reduced by ischemia in controls were better preserved by FA pretreatment (ATP: control, 2740±58 nmol/g; ischemia, 947±55 nmol/g; ischemia plus FA, 1332±101 nmol/g; P=0.02). Basal oxypurines (xanthine, hypoxanthine, and urate) rose with FA pretreatment but increased less during ischemia than in controls. Ischemic superoxide generation declined (3124±280 cpm/mg FA versus 5898±474 cpm/mg placebo; P=0.001). After reperfusion, FA-treated hearts had smaller infarcts (3.8±1.2% versus 60.3±4.1% placebo area at risk; P<0.002) and less contraction band necrosis, terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling positivity, superoxide, and nitric oxide synthase uncoupling. Infarct size declined similarly with 1 mg/d FA. Conclusions— FA pretreatment blunts myocardial dysfunction during ischemia and ameliorates postreperfusion injury. This is coupled to preservation of high-energy phosphates, reducing subsequent reactive oxygen species generation, eNOS-uncoupling, and postreperfusion cell death.


Autonomic Neuroscience: Basic and Clinical | 2007

The bidirectional communication between neurons and mast cells within the gastrointestinal tract

Luc Van Nassauw; Dirk Adriaensen; Jean-Pierre Timmermans

Normal or disordered behaviour of the gastrointestinal tract is determined by a complex interplay between the epithelial barrier, immune cells, blood vessels, smooth muscle and intramurally located nerve elements. Mucosal mast cells (MMCs), which are able to detect noxious and antigenic threats and to generate or amplify signals to the other cells, are assigned a rather central position in this complex network. Signal input from MMCs to intrinsic enteric neurons is particularly crucial, because the enteric nervous system fulfils a pivotal role in the control of gastrointestinal functions. Activated enteric neurons are able to generate an alarm program involving alterations in motility and secretion. MMC signalling to extrinsic nerve fibres takes part in pathways generating visceral pain or extrinsic reflexes contributing to the disturbed motor and secretory function. Morphological and functional studies, especially studies concerning physiological stress, have provided evidence that, apart from the interaction between the enteric nervous system and MMCs, there is also a functional communication between the central nervous system and these mast cells. Psychological factors trigger neuronal pathways, which directly or indirectly affect MMCs. Further basic and clinical research will be needed to clarify in more detail whether basic patterns of this type of interactions are conserved between species including humans.


Journal of Histochemistry and Cytochemistry | 2002

Triple Immunofluorescence Staining with Antibodies Raised in the Same Species to Study the Complex Innervation Pattern of Intrapulmonary Chemoreceptors

Inge Brouns; Luc Van Nassauw; Jeroen Van Genechten; Mariusz Majewski; D.W. Scheuermann; Jean-Pierre Timmermans; Dirk Adriaensen

A general problem in immunocytochemistry is the development of a reliable multiple immunolabeling method when primary antibodies must be used that originate in the same species. We have developed a protocol for the immunodetection of three antigens in a single tissue preparation, using unconjugated primary antibodies raised in the same species. Immunocytochemical detection of neuronal nitric oxide synthase, calcitonin gene-related peptide, and calbindin D28k in the lung of rats demonstrated that part of the pulmonary neuroepithelial bodies are selectively contacted by at least three different nerve fiber populations. The first antigen was detected using tyramide signal amplification, a very sensitive method allowing a dilution of the first primary antibody far beyond the detection limit of fluorescently labeled secondary antibodies. The second antigen was visualized by a fluorophore-conjugated secondary monovalent Fab antibody that at the same time blocks the access of the third secondary antibody to the second primary antibody. Moreover, the monovalence of the Fab fragment prevents the third primary antibody from binding with the second-step secondary antibody. The triple staining technique described here is generally applicable, uses commercially available products only, and allows the detection of three antigens in the same preparation with primary antibodies that are raised in the same species.


Regulatory Peptides | 2009

The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review

Joeri Van Op den bosch; Dirk Adriaensen; Luc Van Nassauw; Jean-Pierre Timmermans

Extensive functional and morphological research has demonstrated the pivotal role of somatostatin (SOM) in the regulation of a wide variety of gastrointestinal activities. In addition to its profound inhibitory effects on gastrointestinal motility and exocrine and endocrine secretion processes along the entire gastrointestinal tract, SOM modulates several organ-specific activities. In contrast to these well-known SOM-dependent effects, knowledge on the SOM receptors (SSTR) involved in these effects is much less conclusive. Experimental data on the identities of the SSTRs, although species- and tissue-dependent, point towards the involvement of multiple receptor subtypes in the vast majority of gastrointestinal SOM-mediated effects. Recent evidence demonstrating the role of SOM in intestinal pathologies has extended the interest of gastrointestinal research in this peptide even further. More specifically, SOM is supposed to suppress intestinal inflammatory responses by interfering with the extensive bidirectional communication between mucosal mast cells and neurons. This way, SOM not only acts as a powerful inhibitor of the inflammatory cascade at the site of inflammation, but exerts a profound antinociceptive effect through the modulation of extrinsic afferent nerve fibres. The combination of these physiological and pathological activities opens up new opportunities to explore the potential of stable SOM analogues in the treatment of GI inflammatory pathologies.


Histochemistry and Cell Biology | 2003

The **WFS1** gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells

Kim Cryns; Sofie Thys; Lut Van Laer; Yoshitomo Oka; Markus Pfister; Luc Van Nassauw; Richard J.H. Smith; Jean-Pierre Timmermans; Guy Van Camp

Heterozygous mutations in the WFS1 gene are responsible for autosomal dominant low frequency hearing loss at the DFNA6/14 locus, while homozygous or compound heterozygous mutations underlie Wolfram syndrome. In this study we examine expression of wolframin, the WFS1-gene product, in mouse inner ear at different developmental stages using immunohistochemistry and in situ hybridization. Both techniques showed compatible results and indicated a clear expression in different cell types of the inner ear. Although there were observable developmental differences, no differences in staining pattern or gradients of expression were observed between the basal and apical parts of the cochlea. Double immunostaining with an endoplasmic reticulum marker confirmed that wolframin localizes to this organelle. A remarkable similarity was observed between cells expressing wolframin and the presence of canalicular reticulum, a specialized form of endoplasmic reticulum. The canalicular reticulum is believed to be involved in the transcellular movements of ions, an important process in the physiology of the inner ear. Although there is nothing currently known about the function of wolframin, our results suggest that it may play a role in inner ear ion homeostasis as maintained by the canalicular reticulum.


International Journal of Cardiology | 2010

Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: Focus on Pi3K/AKT/eNOS pathway

Bert R Everaert; Emeline M. Van Craenenbroeck; Vicky Y. Hoymans; Steven Haine; Luc Van Nassauw; Viviane M. Conraads; Jean-Pierre Timmermans; Christiaan J. Vrints

For more than a decade, endothelial progenitor cells (EPCs) have been implicated in cardiovascular homeostasis. EPCs are believed to reside within the bone marrow in close contact with surrounding stromal cells, and, under stimulation of pro-inflammatory cytokines, EPCs are mobilized out of the bone marrow. Hereafter circulating EPCs home to peripheral tissues, undergoing further proliferation and differentiation. Under certain pathophysiologic conditions this process seems to be blunted, resulting in a reduced capacity of EPCs to engage in vasculogenesis at sites of endothelial injury or tissue ischemia. In this review, we focus on the effects of traditional cardiovascular risk factors on EPC biology and we explore whether pharmacological, dietary and lifestyle interventions can favorably restore EPC mobilization, differentiation, homing and angiogenic properties. Because the PI3K/Akt/eNOS pathway plays a pivotal role in the process of EPC mobilization, migration and homing, we specifically emphasize the involvement of PI3K, Akt and eNOS in EPC biology under these different (patho)physiologic conditions. (Pre)clinically used drugs or lifestyle interventions that have been shown to ameliorate EPC biology are reviewed. These treatment strategies remain attractive targets to restore the regenerative capacity of EPCs in cardiovascular diseases.


Travel Medicine and Infectious Disease | 2008

Schistosomicidal activity of the antimalarial drug, mefloquine, in Schistosoma mansoni-infected mice

Luc Van Nassauw; Stephen Toovey; Joeri Van Op den bosch; Jean-Pierre Timmermans; Jozef Vercruysse

Therapeutic effects of racemic mefloquine were assessed in Schistosoma mansoni-infected mice, and evaluated by recording worm burden, the status of egg maturation and viability, and intestinal mast cell recruitment. Age-matched mice were divided into four groups, of which two were infected. At 8 weeks postinfection, one group of infected and one group of uninfected mice were treated with a single dose of mefloquine (150 mg/kg). Ten days after treatment, all animals were killed. Mefloquine at 150 mg/kg had no effect on worm burden, but significantly reduced the number of eggs in the first three developmental egg stages. Analysis of intestinal mast cell numbers showed that mefloquine induced mastocytosis both in infected and control animals. In conclusion, mefloquine significantly reduces egg production in S. mansoni-infected mice, suggesting a therapeutic potency in schistosomiasis therapy. Mefloquine also exerts a significant proinflammatory effect on the intestine. Through its effect on egg production, mefloquine may be a cause of silent schistosomiasis in travelers using mefloquine for malaria chemoprophylaxis. Further study of the anti-schistosomal activity of mefloquine is warranted, as its activity against other helminths.


The Journal of Comparative Neurology | 2010

Neurochemical Coding of Enteric Neurons in Adult and Embryonic Zebrafish (Danio rerio)

Leen Uyttebroek; Iain T. Shepherd; F. Harrisson; G. Hubens; Ronny Blust; Jean-Pierre Timmermans; Luc Van Nassauw

Although the morphology and development of the zebrafish enteric nervous system have been extensively studied, the precise neurochemical coding of enteric neurons and their proportional enteric distribution are currently not known. By using immunohistochemistry, we determined the proportional expression and coexpression of neurochemical markers in the embryonic and adult zebrafish intestine. Tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase‐activating peptide (PACAP) were observed only in nerve fibers, whereas other markers were also detected in neuronal cell bodies. Calretinin and calbindin had similar distributions. In embryos, all markers, except for choline acetyltransferase (ChAT) and TH, were present from 72 hours postfertilization. Nitrergic neurons, evenly distributed and remaining constant in time, constituted the major neuronal subpopulation. The neuronal proportions of the other markers increased during development and were characterized by regional differences. In the adult, all markers examined were expressed in the enteric nervous system. A large percentage of enteric neurons displayed calbindin and calretinin, and serotonin was the only marker showing significant distribution differences in the three intestinal regions. Colocalization studies showed that serotonin was not coexpressed with any of the other markers. At least five neuronal subpopulations were determined: a serotonergic, a nitrergic noncholinergic, two cholinergic nonnitrergic subpopulations along with one subpopulation expressing both ChAT and neuronal nitric oxide synthase. Analysis of nerve fibers revealed that nitrergic neurons coexpress VIP and PACAP, and that nitrergic neurons innervate the tunica muscularis, whereas serotonergic and cholinergic nonnitrergic neurons innervate the lamina propria and the tunica muscularis. J. Comp. Neurol. 518:4419–4438, 2010.


Autonomic Neuroscience: Basic and Clinical | 2006

Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract

Luc Van Nassauw; Anna Costagliola; Joeri Van Op den bosch; Aldo Cecio; Jean-Marie Vanderwinden; Geoffrey Burnstock; Jean-Pierre Timmermans

Although there is pharmacological evidence to assume that the P2Y4 receptor is a regulator of epithelial ion transport, no detailed data about its distribution within the gut are available. Therefore, this study, using whole mounts and cryosections, aimed to reveal the expression pattern of P2Y4 along the entire guinea-pig gastrointestinal tract. P2Y4 immunoreactivity was absent from enteric neurons but present in enteric glial cells of the stomach, small and large intestine. In the esophagus, P2Y4 appeared to be exclusively located within striated muscle cells. P2Y4 showed also a region dependency regarding its presence in different subpopulations of interstitial cells of Cajal: in myenteric interstitial cells of Cajal in the stomach and ileum; in some intramuscular interstitial cells in the stomach and cecum; in some deep muscular plexus interstitial cells in the ileum; and in some submucosal surface interstitial cells in the colon. These results and the knowledge that P2Y4 activation causes intracellular Ca2+ recruitment led us to suggest that P2Y4 in enteric glia plays a modulatory role in intercellular Ca2+ waves, while P2Y4 in interstitial cells of Cajal modulates intracellular Ca2+ oscillations.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon

Andrei Sibaev; Birol Yüce; Markus Kemmer; Luc Van Nassauw; Ulli Broedl; Hans–Dieter Allescher; Burkhard Göke; Jean-Pierre Timmermans; Martin Storr

Cannabinoid-1 (CB(1)) receptors on myenteric neurons are involved in the regulation of intestinal motility. Our aim was to investigate CB(1) receptor involvement in ascending neurotransmission in mouse colon and to characterize the involved structures by functional and morphological means. Presence of the CB(1) receptor was investigated by RT-PCR, and immunohistochemistry was used for colabeling studies. Myenteric reflex responses were initiated by electrical stimulation (ES) at different distances, and junction potentials (JP) were recorded from circular smooth muscle cells by intracellular recording in an unpartitioned and a partitioned recording chamber. In vivo colonic propulsion was tested in wild-type and CB(1)(-/-) mice. Immunostaining with the cytoskeletal marker peripherin showed CB(1) immunoreactivity both on Dogiel type I and type II neurons. Further neurochemical characterization revealed CB(1) on choline acetyltransferase-, calretinin-, and 5-HT-immunopositive myenteric neurons, but nitrergic neurons appeared immunonegative for CB(1) immunostaining. Solitary spindle-shaped CB(1)-immunoreactive cells in between smooth muscle cells lacked specific markers for interstitial cells of Cajal or glial cells. ES elicited neuronally mediated excitatory JP (EJP) and inhibitory JP. Gradual increases in distance resulted in a wave-like EJP with EJP amplitudes being maximal at the location of stimulating electrode 6 and a maximal EJP projection distance of approximately 18 mm. The CB(1) receptor agonist WIN 55,212-2 reduced the amplitude of EJP and was responsible for shortening the oral spreading of the excitatory impulse. In a partitioned chamber, WIN 55,212-2 reduced EJP at the separated oral sites, proving that CB(1) activation inhibits interneuron-mediated neurotransmission. These effects were absent in the presence of the CB(1) antagonist SR141716A, which, when given alone, had no effect. WIN 55,212-2 inhibited colonic propulsion in wild-type mice but not in SR141716A-pretreated wild-type or CB(1)(-/-) mice. Activation of the CB(1) receptor modulates excitatory cholinergic neurotransmission in mouse colon by reducing amplitude and spatial spreading of the ascending electrophysiological impulses. This effect on electrophysiological spreading involves CB(1)-mediated effects on motor neurons and ascending interneurons and is likely to underlie the here reported in vivo reduction in colonic propulsion.

Collaboration


Dive into the Luc Van Nassauw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Hubens

University of Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge