Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Agnelli is active.

Publication


Featured researches published by Luca Agnelli.


Blood | 2009

Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma

Marta Lionetti; Marta Biasiolo; Luca Agnelli; Laura Mosca; Sonia Fabris; Gabriele Sales; Giorgio Lambertenghi Deliliers; Silvio Bicciato; Luigia Lombardi; Stefania Bortoluzzi; Antonino Neri

To date, little evidence of miRNA expression/deregulation in multiple myeloma has been reported. To characterize miRNA in the context of the major multiple myeloma molecular types, we generated miRNA expression profiles of highly purified malignant plasma cells from 40 primary tumors. Furthermore, transcriptional profiles, available for all patients, were used to investigate the occurrence of miRNA/predicted target mRNA pair anticorrelations, and the miRNA and genome-wide DNA data were integrated in a subset of patients to evaluate the influence of allelic imbalances on miRNA expression. Differential miRNA expression patterns were identified, which were mainly associated with the major IGH translocations; particularly, t(4;14) patients showed specific overexpression of let-7e, miR-125a-5p, and miR-99b belonging to a cluster at 19q13.33. The occurrence of other lesions (ie, 1q gain, 13q and 17p deletions, and hyperdiploidy) was slightly characterized by specific miRNA signatures. Furthermore, the occurrence of several allelic imbalances or loss of heterozygosity was found significantly associated with the altered expression of miRNAs located in the involved regions, such as let-7b at 22q13.31 or miR-140-3p at 16q22. Finally, the integrative analysis based on computational target prediction and miRNA/mRNA profiling defined a network of putative functional miRNA-target regulatory relations supported by expression data.


Journal of Clinical Investigation | 2006

Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and Bcl2A1 as critical target genes

Roberto Piva; Elisa Pellegrino; Michela Mattioli; Luca Agnelli; Luigia Lombardi; Francesco Boccalatte; Giulia Costa; Bruce Ruggeri; Mangeng Cheng; Roberto Chiarle; Giorgio Palestro; Antonino Neri; Giorgio Inghirami

Anaplastic large cell lymphomas (ALCLs) represent a subset of lymphomas in which the anaplastic lymphoma kinase (ALK) gene is frequently fused to the nucleophosmin (NPM) gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo and that ALK activity is strictly required for the survival of ALK-positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK-positive ALCL cell lines, abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell-permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPbeta and the antiapoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK-positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.


Journal of Clinical Oncology | 2010

Gene Expression Profiling Uncovers Molecular Classifiers for the Recognition of Anaplastic Large-Cell Lymphoma Within Peripheral T-Cell Neoplasms

Roberto Piva; Luca Agnelli; Elisa Pellegrino; Valentina Grosso; Ilaria Tamagno; Alessandro Fornari; Barbara Martinoglio; Enzo Medico; Alberto Zamò; Fabio Facchetti; Maurilio Ponzoni; Eva Geissinger; Andreas Rosenwald; Hans Konrad Müller-Hermelink; Pier Paolo Piccaluga; Stefano Pileri; Antonino Neri; Giorgio Inghirami

PURPOSE To unravel the regulatory network underlying nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) -mediated lymphomagenesis of anaplastic large-cell lymphoma (ALCL) and to discover diagnostic genomic classifiers for the recognition of patients with ALK-positive and ALK-negative ALCL among T-cell non-Hodgkins lymphoma (T-NHL). PATIENTS AND METHODS The transcriptome of NPM-ALK-positive ALCL cell lines was characterized by silencing the expression of ALK or STAT3, a major effector of ALK oncogenic activity. Gene expression profiling (GEP) was performed in a series of systemic primary T-NHL (n = 70), including a set of ALK-positive and ALK-negative ALCL (n = 36). Genomic classifiers for ALK-positive and ALK-negative ALCL were generated by prediction analyses and validated by quantitative reverse-transcriptase polymerase chain reaction and/or immunohistochemistry. RESULTS In ALCL cell lines, two thirds of ALK-regulated genes were concordantly dependent on STAT3 expression. GEP of systemic primary T-NHL significantly clustered ALK-positive ALCL samples in a separate subgroup, underscoring the relevance of in vitro ALK/STAT3 signatures. A set of genomic classifiers for ALK-positive ALCL and for ALCL were identified by prediction analyses. These gene clusters were instrumental for the distinction of ALK-negative ALCL from peripheral T-cell lymphomas not otherwise specified (PTCLs-NOS) and angioimmunoblastic lymphomas. CONCLUSION We proved that experimentally controlled GEP in ALCL cell lines represents a powerful tool to identify meaningful signaling networks for the recognition of systemic primary T-NHL. The identification of a molecular signature specific for ALCL suggests that these T-NHLs may represent a unique entity discernible from other PTCLs, and that a restricted number of genes can be instrumental for clinical stratification and, possibly, therapy of T-NHL.


Journal of Clinical Oncology | 2005

Molecular Classification of Multiple Myeloma: A Distinct Transcriptional Profile Characterizes Patients Expressing CCND1 and Negative for 14q32 Translocations

Luca Agnelli; Silvio Bicciato; Michela Mattioli; Sonia Fabris; Daniela Intini; Donata Verdelli; Luca Baldini; Fortunato Morabito; Vincenzo Callea; Luigia Lombardi; Antonino Neri

PURPOSE The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). A recently proposed classification grouped MM patients into five classes on the basis of their cyclin D expression profiles and the presence of the main translocations involving the immunoglobulin heavy chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified translocations/cyclins (TC) groups. MATERIALS AND METHODS The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative polymerase chain reaction analysis; fluorescence in situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. RESULTS Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at the translational level. A meta-analysis of published data sets validated the identified gene expression signatures. CONCLUSION Our data contribute to the understanding of the molecular and biologic features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.


BMC Medical Genomics | 2008

An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma

Domenica Ronchetti; Marta Lionetti; Laura Mosca; Luca Agnelli; Adrian Andronache; Sonia Fabris; Giorgio Lambertenghi Deliliers; Antonino Neri

BackgroundThe role of microRNAs (miRNAs) in multiple myeloma (MM) has yet to be fully elucidated. To identify miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host transcript expression values in a panel of 20 human MM cell lines (HMCLs) and focused on transcripts whose expression varied significantly across the dataset.MethodsmiRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance. Public libraries were queried to predict putative miRNA targets.ResultsWe identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK) whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561, respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a role in plasma cell homing and/or interactions with the bone marrow microenvironment.ConclusionOur data support the idea that intronic miRNAs and their host genes are regulated dependently, and may contribute to the understanding of their biological roles in cancer. To our knowledge, this is the first evidence of deregulated miRNA expression in MM, providing insights that may lead to the identification of new biomarkers and altered molecular pathways of the disease.


Oncogene | 2005

Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma.

Michela Mattioli; Luca Agnelli; Sonia Fabris; Luca Baldini; Fortunato Morabito; Silvio Bicciato; Donata Verdelli; Daniela Intini; Lucia Nobili; Lilla Cro; Giancarlo Pruneri; Vincenzo Callea; Caterina Stelitano; Anna Teresa Maiolo; Luigia Lombardi; Antonino Neri

Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the α-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.


Nature Medicine | 2014

Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers

Francesca Cottini; Teru Hideshima; Chunxiao Xu; Martin Sattler; Martina Dori; Luca Agnelli; Elisa ten Hacken; Maria Teresa Sabrina Bertilaccio; Elena Antonini; Antonino Neri; Maurilio Ponzoni; Magda Marcatti; Paul G. Richardson; Ruben D. Carrasco; Alec C. Kimmelman; Kwok-Kin Wong; Federico Caligaris-Cappio; Giovanni Blandino; W. Michael Kuehl; Kenneth C. Anderson; Giovanni Tonon

Oncogene-induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and the mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies, including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53-independent, proapoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway coactivator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1-induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine-threonine kinase, STK4. Notably, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a new synthetic-lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels.


Genes, Chromosomes and Cancer | 2009

A SNP microarray and FISH‐based procedure to detect allelic imbalances in multiple myeloma: An integrated genomics approach reveals a wide gene dosage effect

Luca Agnelli; Laura Mosca; Sonia Fabris; Marta Lionetti; Adrian Andronache; Ivo Kwee; Donata Verdelli; Cristina Battaglia; Francesco Bertoni; Giorgio Lambertenghi Deliliers; Antonino Neri

Multiple myeloma (MM) is characterized by marked genomic heterogeneity. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To elucidate better the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. We firstly generated genome‐wide profiles of 41 MMs and four plasma cell leukemias, using a self‐developed procedure to infer exact local copy numbers (CNs) for each sample. Our analysis allowed the identification of a significant fraction of patients showing near‐tetraploidy. Furthermore, a conventional hierarchical clustering analysis showed that near‐tetraploidy, 1q gain, hyperdiploidy, and recursive deletions at 1p and chromosomes 13, 14, and 22 were the main aberrations driving samples grouping. Moreover, mapping information was integrated with gene expression profiles of the tumor samples. A multiclass analysis of transcriptional profiles characterizing the different clusters showed marked gene‐dosage effects, particularly concerning 1q transcripts; this finding was also confirmed by a nonparametric analysis between normalized gene expression levels and local CN variations (1027 highly‐significant correlated genes). Finally, we identified several loci in which gene expression correlated with the occurrence of loss of heterozygosity. Our results provide insights into the composite network linking genome structure and transcriptional features in MM.


Leukemia | 2012

Increased osteocyte death in multiple myeloma patients: Role in myeloma-induced osteoclast formation

Nicola Giuliani; Marzia Ferretti; Marina Bolzoni; Paola Storti; Mirca Lazzaretti; B. Dalla Palma; Sabrina Bonomini; Eugenia Martella; Luca Agnelli; Antonino Neri; F Ceccarelli; Carla Palumbo

The involvement of osteocytes in multiple myeloma (MM)-induced osteoclast (OCL) formation and bone lesions is still unknown. Osteocytes regulate bone remodelling at least partially, as a result of their cell death triggering OCL recruitment. In this study, we found that the number of viable osteocytes was significantly smaller in MM patients than in healthy controls, and negatively correlated with the number of OCLs. Moreover, the MM patients with bone lesions had a significantly smaller number of viable osteocytes than those without, partly because of increased apoptosis. These findings were further confirmed by ultrastructural in vitro analyses of human preosteocyte cells cocultured with MM cells, which showed that MM cells increased preosteocyte death and apoptosis. A micro-array analysis showed that MM cells affect the transcriptional profiles of preosteocytes by upregulating the production of osteoclastogenic cytokines such as interleukin (IL)-11, and increasing their pro-osteoclastogenic properties. Finally, the osteocyte expression of IL-11 was higher in the MM patients with than in those without bone lesions. Our data suggest that MM patients are characterized by a reduced number of viable osteocytes related to the presence of bone lesions, and that this is involved in MM-induced OCL formation.


Genes, Chromosomes and Cancer | 2008

Molecular and Transcriptional Characterization of 17p Loss in B-Cell Chronic Lymphocytic Leukemia

Sonia Fabris; Laura Mosca; Giovanna Cutrona; Marta Lionetti; Daniela Intini; Serena Matis; Monica Colombo; Luca Agnelli; Massimo Gentile; Mauro Spriano; Vincenzo Callea; Gianluca Festini; Stefano Molica; Giorgio Lambertenghi Deliliers; Fortunato Morabito; Manlio Ferrarini; Antonino Neri

Distinct genetic abnormalities, such as TP53 deletion at 17p13.1, have been identified as having adverse prognostic relevance in B‐cell chronic lymphocytic leukemia (B‐CLL), and conventional cytogenetic studies have shown that TP53 deletion in B‐CLL is mainly associated with the loss of 17p due to complex chromosomal rearrangements. We used an integrative genomic approach to investigate the significance of 17p loss in 18 B‐CLLs in Binet stage A, carrying a TP53 monoallelic deletion detected by means of fluorescence in situ hybridization (FISH). Genome‐wide DNA analysis using single nucleotide polymorphism (SNP) arrays of 12 of 18 samples showed 17p loss in 11 cases, with breakpoints scattered along the 17p11.2 region. FISH analysis confirmed these findings and revealed 17p loss in a small fraction of leukemic cells in the remaining TP53‐deleted case, and it also indicated 17p loss in the six cases not investigated by means of SNP arrays. Mutations in exons 2–11 of the remaining TP53 allele were found in 9 of 12 deleted samples. Gene‐expression profiling of 60 B‐CLLs, including seven patients with 17p loss, identified 40 differentially expressed genes in 17p‐ versus 17p normal samples, 35 of which were downregulated in 17p‐tumors. The majority (30 of 35) of these transcripts, including putative tumor suppressor genes, mapped to 17p, thus indicating a remarkable gene‐dosage effect. Our data provide evidence that 17p loss may play an additional pathogenetic role in B‐CLL and suggest that the concomitant loss of multiple tumor suppressor genes could be responsible for the highly adverse prognostic relevance associated with TP53 loss.

Collaboration


Dive into the Luca Agnelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Fabris

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge