Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Battaglini is active.

Publication


Featured researches published by Luca Battaglini.


Frontiers in Psychology | 2014

Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia

Rebecca Camilleri; Andrea Pavan; Filippo Ghin; Luca Battaglini; Gianluca Campana

Perceptual learning has been shown to produce an improvement of visual acuity (VA) and contrast sensitivity (CS) both in subjects with amblyopia and refractive defects such as myopia or presbyopia. Transcranial random noise stimulation (tRNS) has proven to be efficacious in accelerating neural plasticity and boosting perceptual learning in healthy participants. In this study, we investigated whether a short behavioral training regime using a contrast detection task combined with online tRNS was as effective in improving visual functions in participants with mild myopia compared to a 2-month behavioral training regime without tRNS (Camilleri et al., 2014). After 2 weeks of perceptual training in combination with tRNS, participants showed an improvement of 0.15 LogMAR in uncorrected VA (UCVA) that was comparable with that obtained after 8 weeks of training with no tRNS, and an improvement in uncorrected CS (UCCS) at various spatial frequencies (whereas no UCCS improvement was seen after 8 weeks of training with no tRNS). On the other hand, a control group that trained for 2 weeks without stimulation did not show any significant UCVA or UCCS improvement. These results suggest that the combination of behavioral and neuromodulatory techniques can be fast and efficacious in improving sight in individuals with mild myopia.


Cognition | 2017

When attention wanders : Pupillometric signatures of fluctuations in external attention

Mahiko Konishi; Kevin Brown; Luca Battaglini; Jonathan Smallwood

Attention is not always directed to events in the external environment. On occasion our thoughts wander to people and places distant from the here and now. Sometimes, this lack of external attention can compromise ongoing task performance. In the current study we set out to understand the extent to which states of internal and external attention can be determined using pupillometry as an index of ongoing cognition. In two experiments we found that periods of slow responding were associated with elevations in the baseline pupil signal over three and a half seconds prior to a behavioural response. In the second experiment we found that unlike behavioural lapses, states of off-task thought, particularly those associated with a focus on the past and with an intrusive quality, were associated with reductions in the size of the pupil over the same window prior to the probe. These data show that both states of large and small baseline pupil size are linked to states when attention is not effectively focused on the external environment, although these states have different qualities. More generally, these findings illustrate that subjective and objective markers of task performance may not be equivalent and underscore the importance of developing objective indicators that can allow these different states to be understood.


I-perception | 2013

Illusory Speed is Retained in Memory during Invisible Motion

Luca Battaglini; Gianluca Campana; Clara Casco

The brain can retain speed information in early visual short-term memory in an astonishingly precise manner. We investigated whether this (early) visual memory system is active during the extrapolation of occluded motion and whether it reflects speed misperception due to contrast and size. Experiments 1A and 2A showed that reducing target contrast or increasing its size led to an illusory speed underestimation. Experiments 1B, 2B, and 3 showed that this illusory phenomenon is reflected in the memory of speed during occluded motion, independent of the range of visible speeds, of the length of the visible trajectory or the invisible trajectory, and of the type of task. These results suggest that illusory speed is retained in memory during invisible motion.


Restorative Neurology and Neuroscience | 2016

Perceptual learning leads to long lasting visual improvement in patients with central vision loss

Marcello Maniglia; Andrea Pavan; Giovanni Sato; Giulio Contemori; Sonia Montemurro; Luca Battaglini; Clara Casco

BACKGROUND Macular Degeneration (MD), a visual disease that produces central vision loss, is one of the main causes of visual disability in western countries. Patients with MD are forced to use a peripheral retinal locus (PRL) as a substitute of the fovea. However, the poor sensitivity of this region renders basic everyday tasks very hard for MD patients. OBJECTIVE We investigated whether perceptual learning (PL) with lateral masking in the PRL of MD patients, improved their residual visual functions. METHOD Observers were trained with two distinct contrast detection tasks: (i) a Yes/No task with no feedback (MD: N = 3; controls: N = 3), and (ii) a temporal two-alternative forced choice task with feedback on incorrect trials (i.e., temporal-2AFC; MD: N = 4; controls: N = 3). Observers had to detect a Gabor patch (target) flanked above and below by two high contrast patches (i.e., lateral masking). Stimulus presentation was monocular with durations varying between 133 and 250 ms. Participants underwent 24- 27 training sessions in total. RESULTS Both PL procedures produced significant improvements in the trained task and learning transferred to visual acuity. Besides, the amount of transfer was greater for the temporal-2AFC task that induced a significant improvement of the contrast sensitivity for untrained spatial frequencies. Most importantly, follow-up tests on MD patients trained with the temporal-2AFC task showed that PL effects were retained between four and six months, suggesting long-term neural plasticity changes in the visual cortex. CONCLUSION The results show for the first time that PL with a lateral masking configuration has strong, non-invasive and long lasting rehabilitative potential to improve residual vision in the PRL of patients with central vision loss.


Attention Perception & Psychophysics | 2015

Probing the involvement of the earliest levels of cortical processing in motion extrapolation with rapid forms of visual motion priming and adaptation

Luca Battaglini; Gianluca Campana; Rebecca Camilleri; Clara Casco

In this study, we investigated the effect of brief motion priming and adaptation, occurring at the earliest levels of the cortical visual stream, on time-to-contact (TTC) estimation of a target passing behind an occluder. By using different exposure times of directional motion presented in the occluder area prior to the target’s disappearance behind it, our aim was to modulate (prime or adapt) the extrapolated motion of the invisible target, thus producing different TTC estimates. Our results showed that longer (yet subsecond) exposures to motion in the same direction as the target produced late TTC estimates, whereas shorter exposures produced shorter TTC estimates, indicating that rapid forms of motion adaptation and motion priming affect extrapolated motion. Our findings suggest that motion extrapolation might occur at the earliest levels of cortical processing of motion, at which these rapid mechanisms of priming and adaptation take place.


Neuropsychologia | 2017

Electrophysiological correlates of motion extrapolation: An investigation on the CNV

Luca Battaglini; Clara Casco; Bethany Rose Isaacs; David Bridges; Giorgio Ganis

ABSTRACT Motion extrapolation (ME), the ability to estimate the current position of moving objects hidden by an occluder, is critical to interact with a dynamic environment. In a typical paradigm, participants estimate time to contact (TTC) by pressing a button when they estimate the occluded moving target reaches a certain cue. Research using this paradigm has shown that motion adaptation of the occluded area produces a shift in the TTC estimate (Gilden et al., 1995). We examined the effect of motion adaptation on the contingent negative variation (CNV), a frontal electrophysiological component (Tecce, 1972) that could reflect the activity of an accumulator (Buhusi and Meck, 2005) for time processing. We predicted that longer TTC estimates due to previous visual motion adaptation would result in a larger CNV because the accumulator can collect more time units. Results showed that motion adaptation actually modulates the CNV, but the CNV amplitude did not correlate with TTC duration, falsifying the accumulator hypothesis. We suggest that motion adaptation interferes with the remembered speed (stored during the visible part of the trajectory) that may be used as input by higher cognitive function to guide the temporal update of target position, regardless of the TTC estimate. HIGHLIGHTSTime to contact task elicits a Contingent Negative Variation (CNV).Previous motion adaptation can modulate the amplitude of the CNV.The amplitude of the CNV does not correlate with the time to contact estimationVisual and higher cognitive functions interact during motion extrapolation.


Scientific Reports | 2017

Dogs are not better than humans at detecting coherent motion

Orsolya Kanizsár; Paolo Mongillo; Luca Battaglini; Gianluca Campana; Lieta Marinelli

The ability to perceive motion is one of the main properties of the visual system. Sensitivity in detecting coherent motion has been thoroughly investigated in humans, where thresholds for motion detection are well below 10% of coherence, i.e. of the proportion of dots coherently moving in the same direction, among a background of randomly moving dots. Equally low thresholds have been found in other species, including monkeys, cats and seals. Given the lack of data from the domestic dog, we tested 5 adult dogs on a conditioned discrimination task with random dot displays. In addition, five adult humans were tested in the same condition for comparative purposes. The mean threshold for motion detection in our dogs was 42% of coherence, while that of humans was as low as 5%. Therefore, dogs have a much higher threshold of coherent motion detection than humans, and possibly also than phylogenetically closer species that have been tested in similar experimental conditions. Various factors, including the relative role of global and local motion processing and experience with the experimental stimuli may have contributed to this result. Overall, this finding questions the general claim on dogs’ high performance in detecting motion.


Frontiers in Aging Neuroscience | 2017

The Effects of Aging on Orientation Discrimination

Clara Casco; Michele Barollo; Giulio Contemori; Luca Battaglini

Visual perception relies on low-level encoding of local orientation. Recent studies show an age-dependent impairment in orientation discrimination of stimuli embedded in external noise, suggesting that encoding of orientation is inefficient in older adults. In the present study we ask whether aging also reduces decoding, i.e., selecting the neural representations of target orientation while discarding those conflicting with it. We compared younger and older participants capability (mean age 24 and 68 years respectively) in discriminating whether the orientation of a Gabor target was left or right from the vertical. We measured (d′), an index of discrimination sensitivity, for orientation offset ranging from 1° to 12°. In the isolated target condition, d′ was reduced by aging and, in the older group, did not increase with orientation offset, thus resulting in a larger group difference at large than small orientation offsets from the vertical. Moreover, oriented elements in the background impaired more discrimination in the older group. However, distractors reduced more d′ when target-background orientation offset was large than when target and flanker had similar orientation, indicating that the effect of the background was not local, i.e., due to target inhibition by similarly oriented flankers. Altogether, these results indicate that aging reduces the efficiency in discarding the response to orientations differing from the target. Our results suggest that neural decision-making mechanisms, involving not only signal enhancement but also non-signal inhibition, become inefficient with age. This suggestion is consistent with the neurophysiological evidence of inefficient visual cortical inhibition in aging.


Frontiers in Psychology | 2016

Contribution of Visuospatial and Motion-Tracking to Invisible Motion

Luca Battaglini; Clara Casco

People experience an objects motion even when it is occluded. We investigate the processing of invisible motion in three experiments. Observers saw a moving circle passing behind an invisible, irregular hendecagonal polygon and had to respond as quickly as possible when the target had “just reappeared” from behind the occluder. Without explicit cues allowing the end of each of the eight hidden trajectories to be predicted (length ranging between 4.7 and 5 deg), we found as expected, if visuospatial attention was involved, anticipation errors, providing that information on pre-occluder motion was available. This indicates that the observers, rather than simply responding when they saw the target, tended to anticipate its reappearance (Experiment 1). The new finding is that, with a fixation mark indicating the center of the invisible trajectory, a linear relationship between the physical and judged occlusion duration is found, but not without it (Experiment 2) or with a fixation mark varying in position from trial to trial (Experiment 3). We interpret the role of central fixation in the differences in distinguishing trajectories smaller than 0.3 deg, by suggesting that it reflects spatiotemporal computation and motion-tracking. These two mechanisms allow visual imagery to form of the point symmetrical to that of the disappearance, with respect to fixation, and then for the occluded moving target to be tracked up to this point.


Vision Research | 2018

Fast random motion biases judgments of visible and occluded motion speed

Luca Battaglini; Marcello Maniglia; Mahiko Konishi; Giulio Contemori; Ambra Coccaro; Clara Casco

ABSTRACT Human sensitivity to speed differences is very high, and relatively high when one has to compare the speed of an object that disappears behind an occluder with a standard. Nevertheless, different speed illusions (by contrast, adaptation, dynamic visual noise) affect proper speed judgment for both visible and occluded moving objects. In the present study, we asked whether an illusion due to non‐directional motion noise (random dynamic visual noise, rDVN) intervenes at the level of speed encoding, thus affecting speed discrimination, or at the level of speed decoding by non‐sensory decision‐making mechanisms, indexed by speed overestimation of visible and invisible motion. In Experiment 1, participants performing a temporal two‐Alternative Forced Choice task, judged the speed of a target moving in front of the rDVN or a static visual noise (SVN). In Experiment 2 and 3, the target disappeared behind the rDVN/SVN, and participants reported whether the target reappeared early or late (Experiment 2), or the time to contact (TTC) with the end of the occluded trajectory (Experiment 3). In Experiment 1 and 2, we found that rDVN affected the point of subjective equality (pse) of the individual’s psychometric function in a way indicating speed overestimation, while not affecting speed discrimination threshold (just noticeable differences, jnd). In Experiment 3 the rDVN reduced the TTC. Though not entirely consistent, our results suggest that a similar speed decoding mechanism, which read‐out motion information to form a perceptual decision, operates regarding of whether motion is visible or invisible.

Collaboration


Dive into the Luca Battaglini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Pavan

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge