Luca Bragina
Marche Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Bragina.
Neuroscience | 2007
Luca Bragina; C. Candiracci; Paolo Barbaresi; Silvia Giovedì; Fabio Benfenati; Fiorenzo Conti
We investigated whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the proteins they express, by studying the degree of co-localization of synapsin (SYN) I and II, synaptophysin (SYP) I and II, synaptosomal-associated protein (SNAP)-25 and SNAP-23 in vesicular glutamate transporter (VGLUT) 1-, VGLUT2- and vesicular GABA transporter (VGAT)-positive (+) puncta in the rat cerebral cortex. Co-localization studies showed that SYNI and II were expressed in approximately 90% of VGLUT1+, approximately 30% of VGLUT2+ and 30-50% of VGAT+ puncta; SYPI was expressed in approximately 95% of VGLUT1+, 30% of VGLUT2+, and 45% of VGAT+ puncta; SYPII in approximately 7% of VGLUT1+, 3% of VGLUT2+, and 20% of VGAT+ puncta; SNAP-25 in approximately 94% of VGLUT1+, 5% of VGLUT2+, and 1% of VGAT+ puncta, and SNAP-23 in approximately 3% of VGLUT1+, 86% of VGLUT2+, and 22% of VGAT+ puncta. Since SYPI, which is considered ubiquitous, was expressed in about half of GABAergic axon terminals, we studied its localization electron microscopically and in immunoisolated synaptic vesicles: these studies showed that approximately 30% of axon terminals forming symmetric synapses were SYPI-negative, and that immunoisolated VGAT-positive synaptic vesicles were relatively depleted of SYPI as compared with VGLUT1+ vesicles. Overall, the present investigation shows that in the cerebral cortex of rats distinct presynaptic proteins involved in neurotransmitter release are differentially expressed in GABAergic and in the two major types of glutamatergic axon terminals in the cerebral cortex of rats.
Journal of Neurochemistry | 2008
Luca Bragina; Ivan Marchionni; Azar Omrani; Andrea Cozzi; Domenico E. Pellegrini-Giampietro; Enrico Cherubini; Fiorenzo Conti
γ‐Aminobutyric acid 1 (GAT‐1) is the most copiously expressed GABA transporter; we studied its role in phasic and tonic inhibition in the neocortex using GAT‐1 knockout (KO) mice. Immunoblotting and immunocytochemical studies showed that GAT‐2 and GAT‐3 levels in KOs were unchanged and that GAT‐3 was not redistributed in KOs. Moreover, the expression of GAD65/67 was increased, whereas that of GABA or VGAT was unchanged. Microdialysis studies showed that in KOs spontaneous extracellular release of GABA and glutamate was comparable in WT and KO mice, whereas KCl‐evoked output of GABA, but not of glutamate, was significantly increased in KOs. Recordings from layer II/III pyramids revealed a significant increase in GABAAR‐mediated tonic conductance in KO mice. The frequency, amplitude and kinetics of spontaneous inhibitory post‐synaptic currents (IPSCs) were unchanged, whereas the decay time of evoked IPSCs was significantly prolonged in KO mice. In KO mice, high frequency stimulation of GABAergic terminals induced large GABAAR‐mediated inward currents associated with a reduction in amplitude and decay time of IPSCs evoked immediately after the train. The recovery process was slower in KO than in WT mice. These studies show that in the cerebral cortex of GAT‐1 KO mice GAT‐3 is not redistributed and GADs are adaptively changed and indicate that GAT‐1 has a prominent role in both tonic and phasic GABAAR‐mediated inhibition, in particular during sustained neuronal activity.
Neuroscience | 2010
Luca Bragina; Silvia Giovedì; Paolo Barbaresi; Fabio Benfenati; Fiorenzo Conti
To define whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, we studied the degree of co-localization of synaptogyrin (SGYR) 1 and 3, vesicle-associated membrane protein (VAMP) 1 and 2, syntaxin (STX) 1A and 1B in vesicular glutamate transporter (VGLUT)1-, VGLUT2- and vesicular GABA transporter (VGAT)-positive (+) puncta and synaptic vesicles in the rat cerebral cortex. Co-localization studies showed that SGYR1 and 3 were expressed in about 90% of VGLUT1+, 70% of VGLUT2+ and 80% of VGAT+ puncta; VAMP1 was expressed in approximately 45% of VGLUT1+, 55% of VGLUT2+, and 80% of VGAT+ puncta; VAMP2 in about 95% of VGLUT1+, 75% of VGLUT2+, and 80% of VGAT+ puncta; STX1A in about 65% of VGLUT1+, 30% of VGLUT2+, and 3% of VGAT+ puncta, and STX1B in approximately 45% of VGLUT1+, 35% of VGLUT2+, and 70% of VGAT+ puncta. Immunoisolation studies showed that while STX1A was completely segregated and virtually absent from VGAT synaptic vesicles, STX1B, VAMP1/VAMP2, SGYR1/SGYR3 showed a similar pattern with the highest expression in VGLUT1 immunoisolated vesicles and the lowest in VGAT immunoisolated vesicles. Moreover, we studied the localization of STX1B at the electron microscope and found that a population of axon terminals forming symmetric synapses were STX1B-positive.These results extend our previous observations on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of glutamatergic and GABAergic release machinery can be contributed by both the presence or absence of a given protein in a nerve terminal and the amount of protein expressed by synaptic vesicles.
Glia | 2008
Giorgia Fattorini; Marcello Melone; Luca Bragina; Chiara Candiracci; Andrea Cozzi; Domenico Pellegrini Giampietro; Mónica Torres-Ramos; Alberto Pérez-Samartín; Carlos Matute; Fiorenzo Conti
Using western blottings, microdialysis, and functional assays we tested the hypothesis that phencyclidine (PCP) modifies the expression and function of glutamate (Glu) transporters in the rat frontal cortex. Western blotting studies revealed that administration of PCP (10 mg/kg/day; 7 days) increased significantly the expression of the astrocytic Glu transporter GLT‐1/EAAT2. Functional studies showed that PCP increased significantly Na+‐dependent Glu uptake in slices and in neuron/astrocyte co‐cultures, and microdialysis studies evidenced that PCP treatment reduced basal Glu output. In our experimental conditions, PCP did not induce toxicity. These studies show that PCP increases the expression of GLT‐1 in the cerebral cortex, thereby increasing Glu uptake and reducing extracellular [Glu].
Journal of Neurochemistry | 2006
Luca Bragina; Marcello Melone; Giorgia Fattorini; Mónica Torres-Ramos; Ainara Vallejo-Illarramendi; Carlos Matute; Fiorenzo Conti
In rat frontal cortex, extracellular levels of glutamate are raised by the anti‐psychotic drug clozapine. We have recently shown that a significant reduction in the levels of the glutamate transporter GLT‐1 may be one of the mechanisms responsible for this elevation. Here we studied whether GLT‐1 down‐regulation induced by chronic clozapine treatment is associated with changes in the expression of synaptophysin, synaptosome‐associated protein of 25 kDa (SNAP‐25) and vesicular glutamate transporter 1 (VGLUT1), three major presynaptic proteins involved in neurotransmitter release. Quantitative high‐resolution confocal microscopy studies in vivo showed that GLT‐1 down‐regulation is closely associated with a significant increase in synaptophysin, but not SNAP‐25 and VGLUT1, expression. This was confirmed in vitro studies, and in western blotting studies of synaptophysin, SNAP‐25 and VGLUT1. In addition, our results show that, following clozapine treatment, synaptophysin expression increases in the very cortical regions in which GLT‐1 expression is down‐regulated. These findings suggest that part of the effects of clozapine may be exerted via an action on the presynaptic machinery involved in neurotransmitter release.
Frontiers in Cellular Neuroscience | 2012
Luca Bragina; Giorgia Fattorini; Silvia Giovedì; Marcello Melone; Federica Bosco; Fabio Benfenati; Fiorenzo Conti
We investigated whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, by performing a quantitative analysis of the degree of co-localization of synaptotagmin (SYT) 1 and 2, synaptic vesicle protein 2 (SV2) A and B, and Rab3a and c in VGLUT1+, VGLUT2+, and VGAT+ terminals and synaptic vesicles (SVs) in rat cerebral cortex. Co-localization studies showed that VGLUT1 puncta had high levels of SV2A and B and of Rab3c, intermediate levels of SYT1, and low levels of SYT2 and Rab3c; VGLUT2 puncta exhibited intermediate levels of all presynaptic proteins studied; whereas vesicular GABA transporter (VGAT) puncta had high levels of SV2A and SYT2, intermediate levels of SYT1, Rab3a, and Rab3c, and low levels of SV2B. Since SV2B is reportedly expressed by glutamatergic neurons and we observed SV2B expression in VGAT puncta, we performed electron microscopic studies and found SV2B positive axon terminals forming symmetric synapses. Immunoisolation studies showed that the expression levels of the protein isoforms varied in the three populations of SVs. Expression of SYT1 was highest in VGLUT1–SVs, while SYT2 expression was similar in the three SV groups. Expression of SV2A was similarly high in all three SV populations, except for SV2B levels that were very low in VGAT SVs. Finally, Rab3a levels were similar in the three SV groups, while Rab3c levels were highest in VGLUT1–SVs. These quantitative results extend our previous studies on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of the respective release machineries can be generated by the differential complement of SV proteins involved in distinct stages of the release process.
Embo Molecular Medicine | 2016
Clizia Capuani; Marcello Melone; Angelita Tottene; Luca Bragina; Giovanna Crivellaro; Mirko Santello; Giorgio Casari; Fiorenzo Conti; Daniela Pietrobon
Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 2: FHM2) is caused by loss‐of‐function mutations in α2 Na+,K+ ATPase (α2 NKA), an isoform almost exclusively expressed in astrocytes in adult brain. Cortical spreading depression (CSD), the phenomenon that underlies migraine aura and activates migraine headache mechanisms, is facilitated in heterozygous FHM2‐knockin mice with reduced expression of α2 NKA. The mechanisms underlying an increased susceptibility to CSD in FHM2 are unknown. Here, we show reduced rates of glutamate and K+ clearance by cortical astrocytes during neuronal activity and reduced density of GLT‐1a glutamate transporters in cortical perisynaptic astrocytic processes in heterozygous FHM2‐knockin mice, demonstrating key physiological roles of α2 NKA and supporting tight coupling with GLT‐1a. Using ceftriaxone treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild‐type mice, we obtain evidence that defective glutamate clearance can account for most of the facilitation of CSD initiation in FHM2‐knockin mice, pointing to excessive glutamatergic transmission as a key mechanism underlying the vulnerability to CSD ignition in migraine.
Frontiers in Cellular Neuroscience | 2011
Fiorenzo Conti; Marcello Melone; Giorgia Fattorini; Luca Bragina; Silvia Ciappelloni
In monoamine-releasing terminals, neurotransmitter transporters – in addition to terminating synaptic transmission by clearing released transmitters from the extracellular space – are the primary mechanism for replenishing transmitter stores and thus regulate presynaptic homeostasis. Here, we analyze whether GAT-1, the main plasma membrane GABA transporter, plays a similar role in GABAergic terminals. Re-examination of existing literature and recent data gathered in our laboratory show that GABA homeostasis in GABAergic terminals is dominated by the activity of the GABA synthesizing enzyme and that GAT-1-mediated GABA transport contributes to cytosolic GABA levels. However, analysis of GAT-1 KO, besides demonstrating the effects of reduced clearance, reveals the existence of changes compatible with an impaired presynaptic function, as miniature IPSCs frequency is reduced by one-third and glutamic acid decarboxylases and phosphate-activated glutaminase levels are significantly up-regulated. Although the changes observed are less robust than those reported in mice with impaired dopamine, noradrenaline, and serotonin plasma membrane transporters, they suggest that in GABAergic terminals GAT-1 impacts on presynaptic GABA homeostasis, and may contribute to the activity-dependent regulation of inhibitory efficacy.
Frontiers in Cellular Neuroscience | 2015
Luca Bragina; Tiziana Bonifacino; Silvia Bassi; Marco Milanese; Giambattista Bonanno; Fiorenzo Conti
Metabotropic glutamate (Glu) receptors (mGluRs) and GABAB receptors are highly expressed at presynaptic sites. To verify the possibility that the two classes of metabotropic receptors contribute to axon terminals heterogeneity, we studied the localization of mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 in VGLUT1-, VGLUT2-, and VGAT- positive terminals in the cerebral cortex of adult rats. VGLUT1-positive puncta expressed mGluR1α (∼5%), mGluR5 (∼6%), mGluR2/3 (∼22%), mGluR7 (∼17%), and GABAB1 (∼40%); VGLUT2-positive terminals expressed mGluR1α (∼10%), mGluR5 (∼11%), mGluR2/3 (∼20%), mGluR7 (∼28%), and GABAB1 (∼25%); whereas VGAT-positive puncta expressed mGluR1α (∼27%), mGluR5 (∼24%), mGluR2/3 (∼38%), mGluR7 (∼31%), and GABAB1 (∼19%). Control experiments ruled out the possibility that postsynaptic mGluRs and GABAB1 might have significantly biased our results. We also performed functional assays in synaptosomal preparations, and showed that all agonists modify Glu and GABA levels, which return to baseline upon exposure to antagonists. Overall, these findings indicate that mGluR1α, mGluR5, mGluR2/3, mGluR7, and GABAB1 expression differ significantly between glutamatergic and GABAergic axon terminals, and that the robust expression of heteroreceptors may contribute to the homeostatic regulation of the balance between excitation and inhibition.
Frontiers in Cellular Neuroscience | 2013
Luca Bragina; Giorgia Fattorini; Silvia Giovedì; Federica Bosco; Fabio Benfenati; Fiorenzo Conti
Analysis of presynaptic protein expression in glutamatergic and GABAergic central synapses performed in several laboratories and with different techniques is unveiling a complex scenario, largely because each presynaptic protein exists in several isoforms. The interpretation of these findings is generally based on the notion that each synapse and each synaptic vesicle contains one of the isoforms of each family of presynaptic proteins. We verified whether this interpretation is tenable by performing triple labeling and immunoisolation studies with the aim of detecting two isoforms of a given presynaptic protein in glutamatergic or GABAergic axon terminals and/or synaptic vesicles (SVs). Here, we show that: (1) the possibility that not all families of presynaptic proteins are expressed in all terminals must be taken into serious account; (2) the expression of a given protein isoform in a terminal does not exclude the expression of other isoforms of the same protein in the same terminal and in the same vesicle. These conclusions open new and interesting problems; their experimental analysis might improve our understanding of the physiology and pathophysiology of central synapses.