Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Brambilla is active.

Publication


Featured researches published by Luca Brambilla.


Enzyme and Microbial Technology | 2000

An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains

J.P. Van Dijken; J Bauer; Luca Brambilla; P Duboc; Jean François; Carlos Gancedo; Marco L. F. Giuseppin; J. J. Heijnen; M. Hoare; H.C Lange; E.A Madden; Peter Niederberger; Jens Nielsen; J.L Parrou; Thomas Petit; Danilo Porro; Matthias Reuss; N van Riel; M Rizzi; H. Y. Steensma; C.T. Verrips; J Vindeløv; Jack T. Pronk

To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.


Applied and Environmental Microbiology | 2001

Efficient Homolactic Fermentation by Kluyveromyces lactis Strains Defective in Pyruvate Utilization and Transformed with the Heterologous LDH Gene

Michele M. Bianchi; Luca Brambilla; Francesca Protani; Chi-Li Liu; Jefferson Lievense; Danilo Porro

ABSTRACT A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using aKluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control theKlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g−1, suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we usedK. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1α subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g−1 (maximum theoretical yield, 1 g g−1), and with high LDH activity.


Fems Microbiology Letters | 2003

Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae

Danilo Porro; Luca Brambilla; Lilia Alberghina

A detailed analysis of the cell size, monitored as protein content, has been performed in glucose-limited continuous cultures, so as to obtain the values of the average protein content for various subpopulations at different cell cycle stages, as a function of the growth rate. Glucose metabolism appears to affect cell size, since there is an increase of the average protein content of the population when cells produce ethanol above the critical dilution rate. If the production of ethanol is forced at low growth rates by the addition of formate, the average protein content increases. These results indicate a link between glucose metabolism and cell size in budding yeast, as observed for mammalian cells.


Fems Yeast Research | 2004

The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications

Paola Branduardi; Minoska Valli; Luca Brambilla; Michael Sauer; Lilia Alberghina; Danilo Porro

Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailiis resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.


Yeast | 2001

Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant

Concetta Compagno; Luca Brambilla; Daniele Capitanio; Francesco Boschi; Bianca Maria Ranzi; Danilo Porro

The absence of triose phosphate isomerase activity causes an accumulation of only one of the two trioses, dihydroxyacetone phosphate, and this produces a shift in the final product of glucose catabolism from ethanol to glycerol (Compagno et al., 1996 ). Alterations of glucose metabolism imposed by the deletion of the TPI1 gene in Saccharomyces cerevisiae were studied in batch and continuous cultures. The Δtpi1 null mutant was unable to grow on glucose as the sole carbon source. The addition of ethanol or acetate in media containing glucose, but also raffinose or galactose, relieved this effect in batch cultivation, suggesting that the Crabtree effect is not the primary cause for the mutants impaired growth on glucose. The addition of an energy source like formic acid restored glucose utilization, suggesting that a NADH/energy shortage in the Δtpi1 mutant could be a cause of the impaired growth on glucose. The amount of glycerol production in the Δtpi1 mutant could represent a good indicator of the fraction of carbon source channelled through glycolysis. Data obtained in continuous cultures on mixed substrates indicated that different contributions of glycolysis and gluconeogenesis, as well as of the HMP pathway, to glucose utilization by the Δtpi1 mutant may occur in relation to the fraction of ethanol present in the media. Copyright


Applied and Environmental Microbiology | 2011

Deletion or Overexpression of Mitochondrial NAD+ Carriers in Saccharomyces cerevisiae Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis

Gennaro Agrimi; Luca Brambilla; Gianni Frascotti; Isabella Pisano; Danilo Porro; Marina Vai; Luigi Palmieri

ABSTRACT The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.


Applied and Environmental Microbiology | 2000

Improved Secretion of Native Human Insulin-Like Growth Factor 1 from gas1 Mutant Saccharomyces cerevisiae Cells

Marina Vai; Luca Brambilla; Ivan Orlandi; Nicola Rota; Bianca Maria Ranzi; Lilia Alberghina; Danilo Porro

ABSTRACT We studied the secretion of recombinant human insulin-like growth factor 1 (rhIGF-1) from transformed yeast cells. The hIGF-1gene was fused to the mating factor α prepro- leader sequence under the control of the constitutive ACT1 promoter. We found that the inactivation of the GAS1 gene in the host strain led to a supersecretory phenotype yielding a considerable increase, from 8 to 55 mg/liter, in rhIGF-1 production.


Applied and Environmental Microbiology | 2007

Induction by Hypoxia of Heterologous-Protein Production with the KlPDC1 Promoter in Yeasts

Andrea Camattari; Michele M. Bianchi; Paola Branduardi; Danilo Porro; Luca Brambilla

ABSTRACT The control of promoter activity by oxygen availability appears to be an intriguing system for heterologous protein production. In fact, during cell growth in a bioreactor, an oxygen shortage is easily obtained simply by interrupting the air supply. The purpose of our work was to explore the possible use of hypoxic induction of the KlPDC1 promoter to direct heterologous gene expression in yeast. In the present study, an expression system based on the KlPDC1 promoter was developed and characterized. Several heterologous proteins, differing in size, origin, localization, and posttranslational modification, were successfully expressed in Kluyveromyces lactis under the control of the wild type or a modified promoter sequence, with a production ratio between 4 and more than 100. Yields were further optimized by a more accurate control of hypoxic physiological conditions. Production of as high as 180 mg/liter of human interleukin-1β was obtained, representing the highest value obtained with yeasts in a lab-scale bioreactor to date. Moreover, the transferability of our system to related yeasts was assessed. The lacZ gene from Escherichia coli was cloned downstream of the KlPDC1 promoter in order to get β-galactosidase activity in response to induction of the promoter. A centromeric vector harboring this expression cassette was introduced in Saccharomyces cerevisiae and in Zygosaccharomyces bailii, and effects of hypoxic induction were measured and compared to those already observed in K. lactis cells. Interestingly, we found that the induction still worked in Z. bailii; thus, this promotor constitutes a possible inducible system for this new nonconventional host.


Biochimica et Biophysica Acta | 2013

Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors

Nadia Casatta; Alessandra Porro; Ivan Orlandi; Luca Brambilla; Marina Vai

Yeast chronological aging is regarded as a model for aging of mammalian post-mitotic cells. It refers to changes occurring in stationary phase cells over a relatively long period of time. How long these cells can survive in such a non-dividing state defines the chronological lifespan. Several factors influence cell survival including two well known normal by-products of yeast glucose fermentation such as ethanol and acetic acid. In fact, the presence in the growth medium of these C2 compounds has been shown to limit the chronological lifespan. In the chronological aging paradigm, a pro-aging role has also emerged for the deacetylase Sir2, the founding member of the Sirtuin family, whose loss of function increases the depletion of extracellular ethanol by an unknown mechanism. Here, we show that lack of Sir2 strongly influences carbon metabolism. In particular, we point out a more efficient acetate utilization which in turn may have a stimulatory effect on ethanol catabolism. This correlates with an enhanced glyoxylate/gluconeogenic flux which is fuelled by the acetyl-CoA produced from the acetate activation. Thus, when growth relies on a respiratory metabolism such as that on ethanol or acetate, SIR2 inactivation favors growth. Moreover, in the chronological aging paradigm, the increase in the acetate metabolism implies that sir2Δ cells avoid acetic acid accumulation in the medium and deplete ethanol faster; consequently pro-aging extracellular signals are reduced. In addition, an enhanced gluconeogenesis allows replenishment of intracellular glucose stores which may be useful for better long-term cell survival.


Biochemical and Biophysical Research Communications | 2010

CK2 activity is modulated by growth rate in Saccharomyces cerevisiae.

Farida Tripodi; Claudia Cirulli; Veronica Reghellin; Oriano Marin; Luca Brambilla; Maria Patrizia Schiappelli; Danilo Porro; Marco Vanoni; Lilia Alberghina; Paola Coccetti

CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and k(cat). Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

Collaboration


Dive into the Luca Brambilla's collaboration.

Top Co-Authors

Avatar

Danilo Porro

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Lilia Alberghina

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Branduardi

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Marco Vanoni

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Michele M. Bianchi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Elisabetta de Alteriis

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Enzo Martegani

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge