Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Carrella is active.

Publication


Featured researches published by Luca Carrella.


Inorganic Chemistry | 2010

Syntheses, Structures, and Magnetic Properties of Diphenoxo-Bridged CuIILnIII and NiII(Low-Spin)LnIII Compounds Derived from a Compartmental Ligand (Ln = Ce−Yb)

Arpita Jana; Samit Majumder; Luca Carrella; Malabika Nayak; Thomas Weyhermueller; Supriya Dutta; Dieter Schollmeyer; Eva Rentschler; Rajesh Koner; Sasankasekhar Mohanta

Syntheses, characterization, and magnetic properties of a series of diphenoxo-bridged discrete dinuclear M(II)Ln(III) complexes (M = Cu or Ni, Ln = Ce-Yb) derived from the compartmental Schiff base ligand, H(2)L, obtained on condensation of 3-ethoxysalicylaldehyde with trans-1,2-diaminocyclohexane, are described. Single crystal X-ray structures of eight Cu(II)Ln(III) compounds (Ln = Ce (1), Pr (2), Nd (3), Sm (4), Tb (7), Ho (9), Er (10), and Yb (12)) and three Ni(II)Ln(III) (Ln = Ce (13), Sm (16), and Gd (18)) compounds have been determined. Considering the previously reported structure of the Cu(II)Gd(III) (6) compound (Eur. J. Inorg. Chem. 2005, 1500), a total of twelve structures are discussed/compared in this study. Four types of composition are observed in the Cu(II)Ln(III) complexes: [Cu(II)LLn(III) (NO(3))(3)(H(2)O)] (1-3: Ln = Ce-Nd), [Cu(II)LSm(III)(NO(3))(3)]·CH(3)COCH(3) (4), [Cu(II)(H(2)O)LLn(III)(NO(3))(3)] (5: Ln = Eu; 6: Ln = Gd), and [Cu(II)LLn(III)(NO(3))(3)] (4A: Ln = Sm; 7-12: Ln = Tb-Yb). On the other hand, the Ni(II)Ln(III) complexes are characterized to have two types of composition: [Ni(II)LLn(III)(H(2)O)(NO(3))(3)] (13-15: Ln = Ce-Nd) and [Ni(II)LLn(III)(NO(3))(3)]·0.5CH(3)COCH(3) (16-24: Ln = Sm-Yb). Among twelve X-ray structures, seven belong to three different isomorphous sets (Cu(II)Ce(III) (1), Cu(II)Pr(III) (2), Cu(II)Nd(III) (3), and Ni(II)Ce(III) (13); Cu(II)Tb(III) (7), Cu(II)Ho(III) (9), Cu(II)Er(III) (10), and Cu(II)Yb(III) (12); Ni(II)Sm(III) (16) and Ni(II)Gd(III) (18)), whereas space group/unit cell parameters of two others (Cu(II)Sm(III) (4) and Cu(II)Gd(III) (6)) are of different types. The lanthanide(III) centers in Cu(II)Ce(III) (1), Cu(II)Pr(III) (2), Cu(II)Nd(III) (3), and Ni(II)Ce(III) (13) complexes are eleven-coordinated, while the lanthanide(III) centers in other compounds are ten-coordinated. As evidenced from the dihedral angle (δ) between the CuO(phenoxo)(2) and LnO(phenoxo)(2) planes, variation in the extent of planarity of the bridging moiety in the Cu(II)Ln(III) compounds takes place; the ranges of δ values are 0.8-6.2° in the 4f(1-7) analogues and 17.6-19.1° in the 4f(8-13) analogues. The Cu(II)Gd(III) (6) compound exhibits ferromagnetic interaction (Eur. J. Inorg. Chem. 2005, 1500). The nature of the magnetic exchange interaction in the Cu(II)Ln(III) complexes has been understood by utilizing the empirical approach; the Ni(II)Ln(III) complexes have been used as references. The metal centers in the Eu(III) complex are uncorrelated, while other 4f(1-6) analogues (Ce(III), Pr(III), Nd(III), and Sm(III)) exhibit antiferromagnetic interaction. Among the higher analogues (4f(7-13)), only Yb(III) exhibits antiferromagnetic interaction, while interaction in other analogues (Gd(III), Tb(III), Dy(III), Ho(III), Er(III), and Tm(III)) is ferromagnetic. An important aspect of the present study is the measurement of the magnetic susceptibility of the unblocked samples as well as on blocking the samples with grease to avoid powder reorientation, if any. Comparison of the two sets of data reveals significant difference in some cases.


Chemistry: A European Journal | 2011

Oligonuclear Ferrocene Amides: Mixed-Valent Peptides and Potential Redox-Switchable Foldamers

Daniel Siebler; Michael Linseis; Teuta Gasi; Luca Carrella; Rainer F. Winter; Christoph Förster; Katja Heinze

Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, paramagnetic ¹H NMR and Mössbauer spectroscopy and investigated theoretically by DFT calculations. According to the appearance of intervalence charge transfer (IVCT) bands in solution, the ferrocene/ferrocenium amides are described as Robin-Day class II mixed-valent systems. Mössbauer spectroscopy indicates trapped valences in the solid state. The secondary structure of trinuclear ferrocene tris-amides remains intact (coiled form) upon oxidation to mono- and dications according to DFT calculations, while oxidation to the trication should break the intramolecular hydrogen bonding and unfold the ferrocene peptide (uncoiled form).


Angewandte Chemie | 2008

Tuning the Basicity of Synergic Bimetallic Reagents: Switching the Regioselectivity of the Direct Dimetalation of Toluene from 2,5‐ to 3,5‐Positions

Victoria L. Blair; Luca Carrella; William Clegg; Ben Conway; Ross W. Harrington; Lorna M. Hogg; Jan Klett; Robert E. Mulvey; Eva Rentschler; Luca Russo

Meta-meta metalation: Remarkably, toluene can be directly dimanganated or dimagnesiated at the 3,5-positions using bimetallic bases with active Me3SiCH2 ligands (see scheme, blue). In contrast, n-butyl ligands lead to 2,5-metalation (red). tmp=2,2,6,6-tetramethylpiperidide.


Dalton Transactions | 2009

Syntheses, characterisation, magnetism and photoluminescence of a homodinuclear Ln(III)-Schiff base family

Joy Chakraborty; Aurkie Ray; Guillaume Pilet; Guillaume Chastanet; Dominique Luneau; Raymond Ziessel; Loïc J. Charbonnière; Luca Carrella; Eva Rentschler; M. S. El Fallah; Samiran Mitra

A novel family of homodinuclear complexes of the general formula [Ln(2)L(2)(X)(2)] (where Ln = Nd(3+), Pr(3+), Sm(3+) and Tb(3+) for 1, 2, 3 and 4, respectively and X, the coordinated NO(3)(-) or Cl(-) anion) has been synthesised from the corresponding lanthanide(III) salts with the pentadentate dianionic Schiff base ligand, H(2)L [N(1),N(3)-bis(salicylideneimino)diethylenetriamine], that exhibits a N(3)O(2) donor set. Single crystal X-ray diffraction studies evidenced the isostructurality of this family of centrosymmetric neutral dinuclear entities where the Ln(III) metal centres are coupled together by two phenolato oxygen atoms belonging to two units of ligand (H(2)L). Interestingly, the two other phenolato groups of H(2)L are mono-coordinated to the metal ions. Temperature dependence (2-300K) magnetic susceptibility studies suggest the presence of an antiferromagnetic interaction operating via double phenolato bridges. Photoluminescence activities of the complexes have been studied and compared with their precursor ligand. All the complexes have been characterised with microanalytical and several spectroscopic techniques.


Chemistry: A European Journal | 2009

Structural and magnetic insights into the trinuclear ferrocenophane and unexpected hydrido inverse crown products of alkali-metal-mediated manganation(II) of ferrocene.

Victoria L. Blair; Luca Carrella; William Clegg; Jan Klett; Robert E. Mulvey; Eva Rentschler; Luca Russo

With the aim of introducing the diisopropylamide [NiPr(2)](-) ligand to alkali-metal-mediated manganation (AMMMn) chemistry, the temperature-dependent reactions of a 1:1:3 mixture of butylsodium, bis(trimethylsilylmethyl)manganese(II), and diisopropylamine with ferrocene in hexane/toluene have been investigated. Performed at reflux temperature, the reaction affords the surprising, ferrocene-free, hydrido product [Na(2)Mn(2) (mu-H)(2){N(iPr)(2)}(4)]2 toluene (1), the first Mn hydrido inverse crown complex. Repeating the reaction rationally, excluding ferrocene, produces 1 in an isolated crystalline yield of 62 %. At lower temperatures, the same bimetallic amide mixture leads to the manganation of ferrocene to generate the first trimanganese, trinuclear ferrocenophane, [{Fe(C(5)H(4))(2)}(3){Mn(3)Na(2)(NiPr(2))(2) (HNiPr(2))(2)}] (2) in an isolated crystalline yield of 81 %. Both 1 and 2 have been characterised by X-ray crystallographic studies. The magnetic properties of paramagnetic 1 and 2 have also been examined by variable-temperature magnetisation measurements on powdered samples. For 1, the room-temperature value for chiT is 3.45 cm(3) K mol(-1), and on lowering the temperature a strong antiferromagnetic coupling between the two Mn ions is observed. For 2, the room-temperature value for chiT is 4.06 cm(3) K mol(-1), which is significantly lower than the expected value for three isolated paramagnetic Mn(II) ions.


Angewandte Chemie | 2009

Direct C-H metalation with chromium(ii) and iron(ii) : transition-metal host/benzenediide guest magnetic inverse-crown complexes

Pablo Alborés; Luca Carrella; William Clegg; Pablo García-Álvarez; Alan R. Kennedy; Jan Klett; Robert E. Mulvey; Eva Rentschler; Luca Russo

Abstract Check M(etal)ate: The chessboard and the figures represent a special reaction in which different low-polarity metals can metalate arenes directly when they are brought into the right position. In a combination of queen (sodium) and knight (chromium or iron), it is possible for the knight (usually the weaker piece) to make a direct deadly hit on the king (benzene) in this game of elemental chess.


Inorganic Chemistry | 2011

Sodium Congener of the Classical Lithium Methylchromate Dimer: Synthetic, X-ray Crystallographic, and Magnetic Studies of Me8Cr2[Na(OEt2)](4)

Ross Campbell; Luca Carrella; William Clegg; Robert E. Mulvey; Eva Rentschler; Stuart D. Robertson; Luca Russo

One of the milestone structures in the development of transition-metal complexes with metal-metal bonds of multiple bond order was the lithium methylchromate dimer Me(8)Cr(2)[Li(donor)](4) (donor = THF or Et(2)O). Using a simple salt metathesis reaction mixing this compound with sodium tert-butoxide, the sodium congener Me(8)Cr(2)[Na(OEt(2))](4) has been synthesized as a green crystalline compound and isolated in 51% yield. Its solid-state structure was determined by single-crystal X-ray diffraction. Exhibiting exact crystallographic C(4h) symmetry, this heavier alkali-metal chromate structure is also dimeric, formally comprising a (Me(8)Cr(4))(4-) tetranionic core with four peripheral Na(+) cations carrying supporting ether ligands. Its salient feature is the long Cr···Cr distance of 3.263(2) Å, which is remarkably elongated compared to that in the lithium THF-solvated congener [1.968(2) Å]. With respect to the methyl C atoms, the Cr coordination is distorted-square-planar. Each Na(+) interacts with four methyl C atoms, and there are also some short Na···H(C) contacts. Unlike for lithium chromate, no NMR spectroscopic data could be obtained for sodium chromate. The paramagnetic character of sodium chromate was confirmed by variable-temperature magnetization measurements, which indicated antiferromagnetic behavior.


RSC Advances | 2015

Hydrolytically active tetranuclear [NiII2]2 complexes: synthesis, structure, spectroscopy and phosphoester hydrolysis

Gopal C. Giri; Ayan Patra; Gonela Vijaykumar; Luca Carrella; Manindranath Bera

Three tetranuclear nickel(II) complexes, [Ni4(H2chdp)2(H2O)4]Br2·4CH3OH·3H2O (1), [Ni4(H2chdp)2(H2O)4](PF6)2 (2) and [Ni4(H2chdp)2(H2O)4](ClO4)2·3.2CH3OH·0.8H2O (3) have been synthesized by exploiting the flexibility, chelating ability and bridging potential of a new symmetrical μ-bis(tetradentate) ligand, H5chdp (H5chdp = N,N′-bis[2-carboxybenzomethyl]-N,N′-bis[2-hydroxyethyl]-1,3-diaminopropan-2-ol). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H5chdp with stoichiometric amounts of NiCl2·6H2O/NaBr, NiCl2·6H2O/NH4PF6, and Ni(ClO4)2·6H2O, respectively, in methanol–water in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination of complexes 1 and 3. Molecular architecture of each complex is built from the self-assembly of two monocationic [Ni2(H2chdp)(H2O)2]+ units which are exclusively bridged by two benzoate functionalities of the ligands. Single crystal X-ray structure analyses reveal that the metallic cores of complexes 1 and 3 consist of four distorted octahedral nickel(II) ions with intra-ligand Ni⋯Ni separation of 3.527(7) A and 3.507(1) A, respectively. Complexes 1 and 3 display a rare μ3:η2:η1:η1 bridging mode of two benzoate groups of H2chdp3− ligand with each bridging among three nickel(II) ions. Mass spectrometric analyses suggest that all the tetranuclear complexes are stable in solution. Potentiometric titration results and the corresponding species distribution curves show that all the complexes exist predominantly in their tetrameric species in solution, in the pH range of 6–12. The catalytic activity of all the three complexes toward phosphoester hydrolysis has been investigated in methanol–water (1 : 1; v/v) solution by UV-vis spectrophotometric technique using bis(p-nitrophenyl)phosphate (BNPP) as a model substrate.


Chemistry: A European Journal | 2016

Exploring the Slow Relaxation of the Magnetization in CoIII‐Decorated {DyIII2} Units

Alejandro V. Funes; Luca Carrella; Eva Rentschler; Pablo Alborés

We have prepared and structurally characterized a new member of the butterfly-like {Co(III) 2 Dy(III) 2 } single-molecule magnets (SMMs) through further Co(III) decoration, with the formula [Co(III) 4 Dy(III) 2 (OH)2 (teaH)2 (tea)2 (Piv)6 ] (teaH3 =triethanolamine; Piv=trimethylacetate or pivalate). Direct current (DC) susceptibility and magnetization measurements were performed allowing the extraction of possible crystal-field parameters. A simple electrostatic modeling shows reasonable agreement with experimental data. Alternating current (AC) susceptibility measurements under a zero DC field and under small applied fields were performed at different frequencies (i.e., 10-1500 Hz) and at low temperatures (i.e., 2-10 K). Multiple magnetization relaxation pathways are observed. Comparison with previously reported {Co(III) 2 Dy(III) 2 } complex measurements allows an overall discussion about the origin of the dynamic behavior and its relationship with crystal-field split ground multiplet sublevels.


ACS Omega | 2017

Inorganic Phosphate and Arsenate within New Tetranuclear Copper and Zinc Complexes: Syntheses, Crystal Structures, Magnetic, Electrochemical, and Thermal Studies

Shobhraj Haldar; Gonela Vijaykumar; Luca Carrella; Steven Batha; Ghezai T. Musie; Manindranath Bera

Three, PO43–/HPO42– and AsO43–-incorporated, new tetranuclear complexes of copper(II) and zinc(II) ions have been synthesized and fully characterized. In methanol–water, reactions of H3cpdp (H3cpdp = N,N′-Bis[2-carboxybenzomethyl]-N,N′-Bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol) with copper(II) chloride in the presence of either NaOH/Na2HPO4·2H2O or KOH/Na2HAsO4·7H2O lead to the isolation of the tetranuclear complexes Na3[Cu4(cpdp)2(μ4-PO4)](OH)2·14H2O (1) and K2[Cu4(cpdp)2(μ4-AsO4)](OH)·162/3H2O (2), respectively. Similarly, the reaction of H3cpdp with zinc(II) chloride in the presence of NaOH/Na2HPO4·2H2O yields a tetranuclear complex, Na(H3O)2[Zn4(cpdp)2(μ4-HPO4)]Cl3·121/2H2O (3). All complexes are characterized by single-crystal X-ray diffraction and other analytical techniques, such as Fourier transform infrared and UV−vis spectroscopy, thermogravimetric and electrochemical studies. The solid-state molecular framework of each complex contains two monocationic [M2(cpdp)]+ (M = Cu, Zn) units, which are exclusively coordinated to either phosphate/hydrogen phosphate or arsenate groups in a unique mode. All three complexes exhibit a μ4:η1:η1:η1:η1 bridging mode of the PO43–/HPO42–/AsO43– groups, with each bridging among four metal ions. The thermal properties of all three complexes have been investigated by thermogravimetric analysis. Low-temperature magnetic studies of complexes 1 and 2 disclose moderate antiferromagnetic interactions mediated among the copper centers through alkoxide and phosphate/arsenate bridges. Electrochemical studies of complexes 1 and 2 in dimethylformamide using cyclic voltammetry reveal the presence of a fairly assessable one-electron metal-based irreversible reduction and one quasireversible oxidation couple.

Collaboration


Dive into the Luca Carrella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manindranath Bera

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shobhraj Haldar

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Jan Klett

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan R. Kennedy

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Ayan Patra

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar

Alejandro V. Funes

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Gopal C. Giri

Kalyani Government Engineering College

View shared research outputs
Researchain Logo
Decentralizing Knowledge